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Preface

The goal of this research was to expand understanding of multilayer perceptrons for

target detection. This has been accomplished. The primary result is that the multilayer

perceptron classifier is really just an approximation to the Bayes optimal discriminant

functions. However, the implementation of the multilayer perceptron shows benefits

over the traditional statistical classifiers in terms other than accuracy such as speed,

compactness, ease of implementation and so forth.

I wish to acknowledge my indebtedness to my committee chairman, Dr. Steven

K. Rogers, whose tireless and unfailing support of my work was crucial to my success.

Most of the significant results were accomplished at his urging, though I was skeptical

at the time of the possible connections he suggested. Also, I would like to thank my

committee members both current and former: Dr. Matthew Kabrisky, Dr. Mark E. Oxley,

and Dr. James P. Mills whose support and encouragement of my efforts were always

welcome. Also, many of the comparisons between learning rules would not have been

possible without the necessary computer support for which I thank the system engineers,

Dan Zambon and Bruce Clay.

Dennis William Ruck
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AFIT/DS/ENG/90-2

Abstract

The multilayer perceptron was extensively analyzed. A technique for analyzing the

multilayer perceptron, the saliency measure, was developed which provides a measure

of the importance of inputs. The method was compared to the conventional statistical

technique of best features and shown to provide similar rap' gs of the input. Using the

saliency measure, it is shown that the multilayer perceptron effectively ignores useless

inputs and that whether it is trained using backpropagation or extended Kalman filtering,

the weighting of the inputs is the same. The backpropagation training algorithm is

shown to be a degenerate version of the extended Kalman filter. The extended Kalman

algorithm is shown to outperform the backpropagation method in terms of classification

accuracy versus training presentations; however, in terms of computational complexity,

the backpropagation algorithm is shown to be highly efficient. The multilayer perceptron

trained using backpropagation for classification is proved to be a minimum mean squared-

error approximation to the Bayes optimal discriminant functions. A simple technique for

sensor fusion is shown to provide a statistically significant improvement in performance

using absolute range and forward looking infrared imagery for target detection over the

single sensor case.

xii



Characterization of Multilayer Perceptrons and their Application to

Multisensor Automatic Target Detection

I. Introduction

1.1 Historical Background

The problem of automatic target detection and recognition has been an active area of

research in the Air Force for over three decades. Several Air Force missions would benefit

greatly from the development of effective target detection and recognition machines such

as reconnaissance, location of tactical and strategic relocatable targets, and the strategic

defense initiative.

Several attempts at designing such pattern recognition machines have produced

good results in the laboratory but have failed miserably in the field. To date there is only

one example of a machine which is capable of performing target detection and recognition

in a variety of conditions, namely, man. He is the existence proof that this problem is

solvable.

Since previous attempts to design a recognizer using statistical and artificial

intelligence techniques have failed, a new approach toward machine vision is required.

Given that the human visual processing system is the only known effective pattern

recognizer, recent research has taken inspiration from the human visual system to design a

new class of pattern recognition machines. A variety of biologically-inspired architectures

have been proposed and tested for pattern recognition problems. However, a single

architecture has dominated the field for the past several years. That architecture is

known variously as the Multilayer Perceptron, the Back Propagation Network, or simply

a multilayer feed-forward network. Hereafter this architecture shall be referred to as the

Multilayer Perceptron.

• • Ill I I I I I 1



There are many advantages which these neural networks claim such as 1) trainability,

2) intrinsically iterable, 3) fast, 4) brain-like. The purpose of this dissertation is to

examine the most popular neural network, the multilayer perceptron, and its applicability

to multisensor automatic target detection and pattern recognition in general.

The multilayer perceptron has previously been shown to be effective as a classifier

for target recognition problems (15) (24); however, a great deal is not known regarding

appropriate design, training, and performance. Prior to this dissertation, it was not

known how a multilayer perceptron would treat spurious features. It was thought that

poor features might degrade the classifiers performance when added to a set of useful

features. A related question was how to choose the input features for a multilayer

perceptron classifier. Also, the backpropagation training algorithm and its relationship to

more conventional techniques was not understood. Additionally, the performance of the

multilayer perceptron as a classifier was not understood. The relationship to conventional

techniques was unknown. It was thought that these classifiers might provide better

performance than traditional statistical classifiers. Finally, the multilayer perceptron had

not been used in a multisensor target detection system for tactical targets, and whether

or not the multilayer perceptron could perform sensor fusion was not known. All these

questions are answered in this dissertation.

1.2 Problem Statement and Scope

The multilayer perceptron will be analyzed to determine its usefulness for automatic

target detection and pattern recognition in general. The aspects to be examined are 1)

selection of features for recognition, 2) relationship of the backpropagation training algo-

rithm to other well-known methods, 3) relationship to conventional statistical classifiers,

and 4) applicability to performing multisensor fusion.

Feature Selection. The selection of features for pattern recognition is critical for

good recognition performance (6:15-17). A novel measure will be introduced which

yields a ranking of the input features for a multilayer perceptron. This technique allows

2



pruning of the input features required for recognition (27). The desirability of minimizing

the number of features is well-known (7:95) (9) (6:187) and will be discussed further in

Chapter III.

Understanding Backpropagation. A new result showing that the popular backprop-

agation training algorithm is actually a degenerate form of the extended Kalman filter

algorithm for setting the weights in a multilayer perceptron will be presented in Chapter IV.

Understanding the method of determining the weights in a multilayer perceptron is crucial

since all the information about the problem is contained in the connectivity of the weights

and their values. An understanding of how backpropagation sets the weights can lead to a

better understanding of its strengths and weaknesses. This relationship is also presented

in (30).

Bayesian Relationship. It will be shown that the multilayer perceptron when

trained to perform classification using the backpropagation algorithm leads to a classifier

which approximates the Bayesian optimal discriminant functions. This is a previously

unknown result, and it shows that the multilayer perceptron classifier is closely related to

conventional statistical classifiers which have been used in pattern recognition for over

twenty years and whose performance is well understood (29).

Sensor Fusion. A simple but effective method for performing feature level sensor

fusion will be presented which provides statistically significant improvements in target

detection. Since multiple sensors will be required to perform many of the Air Force

missions (2), it is essential that a pattern recognizer be extensible to multiple sensors.

Baseline Comparison. The work of Roggemann (19) will be used as a baseline in

this effort. Roggemann used a conventional Bayesian approach to target detection using

multiple sensors. The use of the same database as Roggemann will allow comparison

of the neural network approach with a traditional statistical method. However, other

databases will be used when appropriate.

3



1.3 Dissertation Organizationz

The following chapter will review the basic concepts of target and pattern recog-

nition, the multilayer perceptron architecture and training, and test methodologies. The

succeeding chapters are organized in a bottom up fashion on the classifier architecture. In

Chapter II1, the selection of inputs to the classifier will be considered. The selection of

features for classification using a multilayer perceptron will be derived. After considering

the inputs to the classifier, Chapter IV examines the training of a multilayer perceptron.

The backpropagation training algorithm will be analyzed in the context of the extended

Kalman filtering algorithm. The fully trained multilayer perceptron classifier will be

considered in Chapter V. The relationship between the multilayer perceptron trained with

backpropagation and the Bayes optimal discriminant functions will be exposed. Finally,

the application of the multilayer perceptron classifier to an Air Force problem, multisensor

fusion, will be examined in Chapter VI. A simple but effective technique for performing

multisensor fusion will be developed. Chapter VII will discuss recommendations for

future research and the conclusions which can be drawn from this work.

4



H. Background Material

The purpose of this chapter is to review the essential background material necessary

to understanding the approaches and results of this dissertation. The first section will

review the basic concepts of target and pattern recognition. The two following sections

will present the multilayer perceptron architecture and two important training algorithms

for it. The last section will review the test methodologies employed in evaluating the

training algorithms and the classifiers.

2.1 Basic Concepts of Target and Pattern Recognition

The process of target recognition in its basic form consists of three separate stages:

segmentation, feature extraction and classification (see Figure 1). Each of these stages

will be reviewed to introduce the essential concepts and nomenclature.

The first stage in target recognition is segmentation. Segmentation is the process

of assigning a label to each pixel in an image. For example, the set of labels might be

{background,target} or {building,rivergrass,... }. In this dissertation, segmentation will

refer to assigning labels from the set {background, target}. The purpose of segmentation

is to reduce the number of pixels to process further using the feature extraction stage. In

most cases, the number of pixels in an image is far too great to process in detail with

current computer technology. Another reason for segmentation is to identify multiple

targets in an image and their locations. After the image has been segmented into potential

targets and background, the contiguous groups of potential target pixels called blobs are

further processed by the feature extraction stage. This dissertation does not address

the segmentation stage. The segmentation algorithms used were those developed by

Roggemann (19) and Ruck (24).

The feature extraction stage computes a number of features for each blob detected in

the source image. Some example features are length-width ratio, average temperature (in

infrared), complexity (ratio of border pixels to total blob pixels). The features computed

L_ 
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for a blob are concatenated into a vector of numbers. This feature vector is then sent to

the classification stage. These feature vectors lie in the feature space. This dissertation

will address the issue of selecting the appropriate features to be computed in this stage

using a novel technique which ranks the saliency of the features.

The final stage in the basic target recognition architecture is the classifier which

assigns a label to an input feature vector. The types of labels are {target, non-target}

for target detection and {tank, truck, jeep, ... } for target recognition. This dissertation

will extensively evaluate the use of a multilayer perceptron for classification and compare

both empirically and theoretically the multilayer perceptron performance to traditional

statistical classifiers.

Two popular statistical classifiers will be compared to the multilayer perceptron. The

non-parametric Bayesian classifier using both histograms and Parzen windows to estimate

the probability density functions and the k-nearest neighbor algorithm were chosen for

comparison. Roggemann used the histogram technique for his non-parametric Bayesian

classifier. In order to use this method, he assumed the input features were conditionally

independent (19:91-92). The non-parametric Bayesian classifier with Parzen windows did

not make this independence assumption. These classifiers were chosen because they are

non-parametric. A non-parametric classifier does not make any assumptions regarding

the probability density function controlling the generation of feature vectors. The vector

produced by the feature extraction stage is a random variable for a number of reasons.

The following conditions cause unpredictable variability in the feature vectors extracted

for a given class of objects: 1) noise in the source image due to environmental conditions

or sensor limitations, 2) imperfect image segmentation, 3) out-of-plane rotation of the

object (a problem when the features extracted are sensitive to such rotations which is

usually the case). Thus, the feature vector is a random variable. If the conditions causing

the variability are sufficiently understood, it might be possible to determine the type of

probability density function that governs the feature vectors. In general, this cannot be

determined; hence, either some distribution is assumed, such as Gaussian, or none is. If

7



the form of the distribution is assumed, then the only remaining task is to determine the

parameters of the distribution. In the Gaussian case, these are the mean and variance. A

classifier predicated on the assumption of a form of the distribution function is termed a

parametric classifier. In target recognition, non-parametric classifiers are favored because

it is often impossible to determine the form of the distribution function and the Gaussian

assumption is often invalid.

The non-parametric Bayesian classifier using Parzen windows was one of the two

statistical classifiers used in this dissertation to provide a baseline comparison with the

multilayer perceptron. A Bayesian classifier is optimal when the distributions are known

in the sense of minimizing either the probability of error or some other cost function

when different type errors have different associated costs (7:17). Let x denote the M-

dimensional vector to be classified and let u.', i = 1 .... , N represent the N classes. The

Bayesian decision rule is

DecideLi if P(wi x) > P(wj x) forall j 0 i

where P( ,jjx) is the conditional probability of class wi given input vector x. Since

the conditional probability distributions are not known, this classifier is not optimal;

nonetheless, it is widely used. The classifier can use Parzen windows to estimate the class

conditional density functions of the features from a set of training data. The training data

consists of a set of feature vectors whose true classification is known. A Parzen window

estimate of the density function places a window function centered at each of the points

in the feature space where a training vector is present for a given class (7:88-95). Then

the window functions are summed together. Let X,= {x, , Xi.2, ... , XiP, } be the set of

training vectors for class w, where Pi is the number of training vectors from class w,. Then

the Parzen window estimate of p(x,,i) using Gaussian windows is given by

) = I . - I Piexp (  (x - xi' ) (x - x 'j)

'8



where i(xI.i) is the Parzen window estimate of the true density function, 11 is the

dimensionality of the feature vector, x, and a is the smoothing factor or window width.

The width of the window function is proportional to the smoothing factor, a. Low

values of c result in less averaging of the individual data points while high values of a

cause many data points to be averaged together to obtain the estimate of the probability

density function at a given point. It has been shown that the above approximation to

the conditional density function converges in the mean-square metric to the true density

function under certain non-restrictive conditions (7:89-90). The resulting density function

can then be easily converted to an a posteriori probability using Bayes' Rule (23:51-57)

and the a priori probabilities of occurrence of the classes. In the experiments where the

non-parametric Bayesian classifier with Parzen windows is used, a range of smoothing

factors is tried and the best smoothing factor in that range is listed. The smoothing factors

used are from 0.1 to 1.5 by increments of 0.2.

The other non-parametric classifier compared to the multilayer perceptron is the

k-nearest neighbor algorithm (7:103-105) (13:120). This algorithm also requires no

assumptions regarding the underlying distributions controlling tL- feature vectors. The

algorithm computes the distance between an unclassified feature vector and all the feature

vectors in the training set (known as exemplars). These distances are then ranked from

smallest to largest. The class assigned to the unknown vector is the class with majority

representation in the k nearest exemplars. The parameter k is normally chosen to be odd

so that for the two class decision case, there is always a clear majority. In the multiclass

case, though, k odd does not guarantee a single class will have a majority. In this event,

the class assigned is selected randomly from the tying classes. It should be noted that

this algorithm is also performing a type of density function estimation (7:104), so it is

closely related to the non-parametric Bayesian classifier using Parzen windows. When

the k-nearest neighbor algorithm is used in the following experiments, k is set to all odd

values between I and 9, inclusive. The value of k yielding the best classification accuracy

from these values is reported.

9



These two common statistical classifiers in addition to Roggemann's approach will

be compared to the multilayer perceptron classifier. The next two sections will review the

development of the multilayer perceptron architecture and its training algorithms.

2.2 The Multilayer Perceptron Architecture

The multilayer perceptron architecture is an outgrowth of the Perceptron which was

first studied by Rosenblatt in the mid 1950s (22). The term Perceptron was coined by

Rosenblatt to cover a variety of architectures designed by him while trying to model

the human brain. Today, the use of the term perceptron generally refers to a single

node. The term multilayer perceptron m:,,n," more than one layer of nodes with nodes

fully interconnected between layers. This dissertation will deal strictly with multilayer

perceptrons.

Figure 2 shows the structure of a multilayer perceptron. Each of the circles in the

diagram represents a node which performs a weighted sum of the inputs and applies a

nonlinearity (see Figure 3). The network shown has two hidden layers, that is, two layers

which are neither input nor output. The network has 11 inputs, H1 nodes in the first

hidden layer, H 2 nodes in the second hidden layer, and A' outputs. A short hand notation

for describing this architecture is .1 - H' - H 2 - N. A single hidden layer network

would be simply J1 - HI - N. The superscripts are used to indicate the layer the variable

is associated with. The layers are numbered from the first layer of nodes performing the

nonlinear function of the weighted sum of the inputs. In other words, the inputs to the

network are not counted as a layer. The first hidden layer of the netwo, k is Layer 1.

A two hidden layer network is also called a three layer network because there are three

layers of weights, and a single hidden layer network is often called a two layer network.

Other nonlinearities can be used. The most popular one, used in this research, is shown in

Figure 3.

A remaining problem with application of multilayer perceptrons to various problems

lies in determination of the architecture. To date, no techniques have been accepted which

10
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specify the number of hidden layers or nodes in each hidden layer based on the training

data or other a priori information. Techniques have been developed recently which may

allow automatically pruning the size of a network (4) (33). The combination of these

techniques with some basic rules of thumb for sizing a network should provide effective

methods for automatically architecting a multilayer perceptron. This dissertation will not

deal with the automatic sizing issue; however, procedures and guidelines for sizing a

network are provided in Appendix A.

In order to make such networks useful, a method for determining the interconnection

weights is required. Algorithms for setting the weights are called learning rules or training

algorithms and will be discussed in the next section.

2.3 Multilayer Perceptron Training Algorithms

Many researchers worked in the area of adaptive systems during the 1960s using

perceptrons. The single node perceptron was a popular architecture for which the

learning rule had been shown to converge when a solution exists (13:82-87). However,

in 1969 Minsky and Papert published a now famous book which showed that a single

node perceptron could not perform a simple Boolean function, namely, the exclusive-OR

problem (12). This book discouraged many researchers from further work in the area.

From that time until the early 1980s neural network research was not vigorously pursued.

It can be easily shown that a simple two layer network can perform the exclusive-OR

problem (31:64). In fact, Rosenblatt had developed some algorithms which could train

multilayer networks (22) although convergence of these training procedures could not be

proved. The lack of an effective training rule for multilayer networks has been cited by

many researchers as the primary reason for the demise of neural network research in the

1970s (12:231-232). Effective training rules now exist for the multilayer perceptron and

will be discussed in the next two sections.
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2.3.1 Backpropagation There are now many training algorithms available for

multilayer perceptrons. Some algorithms have been developed for multilayer networks

where the nodes have hard limiter nonlinearities (e.g., MRII by Widrow (37)). However,

the most popular architecture uses sigmoidal nonlinearities on the nodes. The sigmoid is

differentiable which makes possible weight update rules based on the gradient of the error

with respect to the weights in the network. The most popular rule for training the weights

in a multilayer perceptron is the backpropagation training algorithm. This technique was

made popular by Rumelhart et al in their book Parallel Distributed Processing (31) in

1986 although it was first derived by Werbos in 1974 (35) and rederived by Parker in 1982

(14). Recently, it has been suggested by White (36) that the stochastic approximation

techniques developed by Robbins and Monro (16) in 1951 subsume backpropagation.

Backpropagation is a gradient descent method for training the weights in a multilayer

perceptron. For a given problem, there is a set of training vectors X such that for every

vector x E X there is an associated desired output vector d E D where D is the set of

desired outputs associated with the training vectors in X. Let the instantaneous error Ep

be defined as

1NEp = I (dp - z P)T(dp - zp)
N

_2 (dkp - Zkp) (1)2k=1

where dk,p is the kth component of the pth desired output vector, dp, and Zk,p is the kth

component of the actual output vector, zP, when the pth training exemplar, xP, is input to

the multilayer perceptron. Let the total error ET be defined as follows:

P
ET= Ep

p=l

where P is the cardinality of X, in other words, the total number of training vectors.

Note that ET is a function of both the training set and the weights in the network. The
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backpropagation learning rule is defined as follows:

W+ = w- - 77 2p(W) + a - W--) (2)

where 1), the learning rate, is some small positive number, a, the momentum factor, is also

a small positive number, and w represents any single weight in the network. In the above

equation, w+ indicates the value of the weight after update, w- is the current weight value,

and w-- is the previous weight. When the momentum term is used (a 5 0), the training

rule is called the Momentum Method; otherwise, it is the Backpropagation Method.

The algorithm (Equation 2 with a = 0) is often termed instantaneous backpropagation

because it computes the gradient based on a single training vector. Another variation is

batch backpropagation which computes the weight update using the gradient based on

the total error ET. Informal experiments indicate that the instantaneous method works

better than the batch mode; hence, when training results are presented, instantaneous

backpropagation is the method used.

To use the multilayer perceptron for target recognition, the input to the network is

the feature vector produced by the feature extraction stage, and the desired output is some

vector that indicates the class of the input. Often the input vectors must be normalized in

some fashion, so that no one feature dominates the classification process.

The following normalization algorithm has proved to be highly effective on a wide

variety of recognition data. A normalization transformation is first computed from the

training set of feature vectors. For each feature, the mean and standard deviation are

computed over the training set irrespective of class. Then each feature of each vector is

normalized by subtracting the mean and dividing by the standard deviation of the feature.

Let t, be the mean of feature i over the training set and a, be the standard deviation. Note

that this ai is different from the smoothing factor or window width, a, associated with the

Parzen windows in the non-parametric Bayesian classifier. Then for every vector in both
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the training set and test set, the normalized ith component is

x'i = Xi - Pi (3)
oTi

where x'i is the normalized value. This procedure will be called Gaussian Normalization.

Generally, the desired output is a block code such that there is one output for each

potential class of inputs. When a vector of a given class is inputted, the desired output

of the node corresponding to that class is high and all other nodes are low. In Chapter V,

it will be shown that this particular choice of desired output allows the outputs of the

network to be interpreted as a posteriori probabilities. Other researchers have chosen

to encode the output, for example a binary code of high and low outputs so that 2A'

classes can be represented by N outputs (32). Additionally, it has been suggested that

pseudo-random output vectors or Hadamard like codes be used to insure that each output

has equal likelihood of being high as well as low in order to speed-up learning (17).

2.3.2 Extended Kalman Filtering

Training Algorithm Another significant method for training the weights in a multilayer

perceptron is the extended Kalman filter algorithm. Singhal et al suggested the idea of

using an extended Kalman filter to train a multilayer perceptron (34). Basically, a Kalman

filter attempts to estimate the state of a system which can be modeled as a linear system

driven by additive white Gaussian noise and where the measurements available are linear

combinations of the system states corrupted by additive white Gaussian noise (10). The

weights of the multilayer perceptron are the states which the Kalman filter attempts to

estimate, and the output of the network is the measurement used by the Kalman filter.

Since the multilayer perceptron is not a linear system, the usual Kalman filter cannot be

used. However, if the model of the system is linearized, then the Kalman filter algorithm

can be applied. The resulting filter is called an extended Kalman filter.

The Kalman filter approach to training a multilayer perceptron considers the optimal

weights in the network to represent the state of the system which is to be estimated.
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The optimal weights are those that minimize the total error, ET. Since the underlying

distributions which control the feature vector, x, are assumed to be time-invariant, the

state of the network does not change. Hence, this is a static estimation problem. If the

goal were to track some changing distributions, then a dynamics model would be required

for the state estimation. A possible system model is

w(t) = 0

where w is a vector consisting of all the weights and thresholds in the network. (Note

that this notation differs from the usual Kalman filter literature. Compatibility with that

literature has been maintained wherever possible. In the Kalman filter literature, the states

being estimated are represented by x(t) and the driving noise is w(t). Here the states being

estimated are w(t), the network inputs are x(t), and the driving noise is n(t).) However,

problems can arise from using this system model in practice due to the operation of the

Kalman filter. As the Kalman filter obtains more observations of the system behavior, its

estimated error in the states approaches zero. If some change occurs in the system, the

filter will not track the change because it believes its estimates are correct. In the jargon

of the Kalman filter literature, the filter gain goes to zero. Thus, it is often advantageous

to add some noise to the system model which prevents the gain from going to zero and

forces the filter to continually adjust the state estimates. In this case the system model is

(11:44)

W(t) = G(t)n(t)

where n(t) is a zero-mean white Gaussian noise process of arbitrary dimension n and

G(t) is a matrix of dimension S, the number of weights and thresholds in the network, by

n that provides flexibility in characterizing the driving noise in the system model. The

covariance kernel of n(t) is

E{n(t)nT (t + r)} = Q(t)6(t)
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where Q(t) is termed the strength matrix of the driving noise, n(t). This notation differs

somewhat from the traditional Kalman filter literature where the states being estimated are

x(t) and the noise vector is w(t). Initially, several different system models were tested to

determine which provided the best performance in training the multilayer perceptron with

the extended Kalman filter algorithm. These variations will be discussed after the Kalman

technique has been presented.

In the extended Kalman filter algorithm, the measurements of the system are assumed

to be some nonlinear function of the states corrupted by zero-mean white Gaussian noise.

Thus the observations of the system are modeled as follows (11:44):

z(ti) = h[w(ti), ti + v(ti)

where z(ti) is the output of the system at observation time ti, h[., .] is the nonlinear

function mapping the states to the observations, and v(ti) is a zero-mean white Gaussian

noise sequence. The covariance kernel of v(ti) is

Ejv(t )VT (t 3)} {R(ti ) t 2=tj

0 ti # tj

where R(t,) is called the strength matrix of the observation noise, v(t,).

Using the preceding models for the system and the observations, a method for

updating the estimate of the system state can be derived. The update equations are (11:44)

*f(t+ ) = *v(t -) + K(t,)[d()zt,) (4)

K(tj) = P(t)H T (t2 )jH(tj)P(t;)H T (t,) + R(ti) - ' (5)
P(t .+ ) = P(t,-) - K(t,)H(t,)t) (6)

where *(ti) is the Kalman filter estimate of the system state at time t,, K(t,) is called the

Kalman gain and is an S by N matrix (N is the number of outputs), d(t,) is the desired
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output, H(ti) is the gradient matrix which results from linearizing the network, and P(ti)

is a matrix representing the uncertainty in the estimates of the states of the system. The

symbol t- represents the time just prior to performing the updates, and t+ represents the

time just after the updates. The factor, [d(ti) - z(ti)], in Equation 4 is termed the residual

because it represents the difference between what was expected and the actual observation.

This difference is what drives the correction to the weights in the network. The entries in

the gradient matrix are (11:44)

Hij = (7)

A usual part of the Kalman filter is the propagation phase. For a dynamic system

which is changing between the times when observations are taken, the estimate of the

state of the system at the new time, t,+1 , must be based on both the estimate of the system

at the previous observation time, ti, and the dynamics of the system. For a static system

model, which is being used here, the estimate of w(ti+1 ) is the same as at the previous

time. When the system is driven by white Gaussian noise, the uncertainty in the estimate

of the states increases in proportion to the noise. Hence, the propagation of the system

state from ti to ti+1 is given by integrating the following equations (11:44)

w(tlt,) = 0 (8)

P(tlt,) = G(t)Q(t)GT (t) (9)

In the above equations, the dot notation indicates derivative with respect to time and the

(tjt,) means the estimate of the function at time t given its value at time ti. Assuming that

G(t) = I (I is the S by S identity matrix) and Q(t) = Iq(t) where q(t) is slowly changing

in relation to the propagation time, the integrated propagation equations are

*(ti+) = w(t ? ) (10)

P(ts-1 ) = P(t + ) + lq(t) (11)
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When actually implementing the extended Kalman filter for determining the weights,

initial conditions must be specified, namely, w(to) and P(to). In the absence of any a

priori information, the initial state vector can be set randomly, and the P matrix can be set

to some multiple of the identity matrix. The following initial conditions were used in this

implementation of the Kalman algorithm

P(to) = 1IIE

w(to) = N[0,P(t0)

where E is some small positive number and N[0, P(to) denotes a zero-mean Gaussian

distribution with covariance matrix P(to).

As stated earlier, several different system models were evaluated for training a

multilayer perceptron using the extended Kalman algorithm. The models differed in

whether or not driving noise was present and if so how it changed with time. The

following models were tested

1. No driving noise: q(t) = 0.

2. Fixed driving noise: q(t) = q where q is a fixed small positive number.

3. Decaying driving noise: q(t) = qexp(-k/50) where k is the sweep number, that

is, the number of passes through the complete training set at time t in the training.

The performance of these three models for training is shown in Figures 4 - 6 on the

Exclusive-OR (XOR) problem (this problem is fully defined in Section 4.4 on p. 55). For

comparison purposes, the performance of backpropagation and momentum is also shown.

The network trained was a single hidden layer network with four nodes in the hidden

layer. For each of the Kalman trained networks, the P matrix was initialized using E = 1.0.

When driving noise (Q-noise) was used, q was set to 0.05. A learning rate of il = 0.3 was

used for backpropagation; and when momentum was used, it was set to a = 0.8. Each

network started with the same random weights. From the figures, it can be seen that the

algorithm which used decaying driving noise is far superior to the other Kalman system
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Comparison of Kalman Models on XOR Training
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Figure 4. Comparative Performance of Extended Kalman Training on the Exclusive-OR
Problem using Different Driving Noise Models up to 500,000 Iterations

models. Different initial conditions would yield somewhat different results; however,

for all the runs observed the decaying driving noise model yielded noticeably superior

results. Therefore, it was decided to use the decaying driving noise model for all Kalman

training of multilayer perceptrons in this research. In fact, even the parameters were fixed

at f = 1.0 and q = 0.05 for all training runs.

2.4 Test Methodologies

This section will review the test methodologies used to evaluate the performance of

the classifiers designed. First, the methods of partitioning the database between training

and test will be explained followed by a review of the techniques of confidence intervals.

2.4.1 Database Partitioning Two methods were used for partitioning the data

between training and testing subsets. The first method is called the hold out technique.

The hold out technique randomly selects a fraction of the database for use in testing. The
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Comparison of Kalman Models on XOR Training
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Figure 5. Comparative Performance of Extended Kalman Training on the Exclusive-OR
Problem using Different Driving Noise Models up to 100,000 Iterations

remaining feature vectors in the database are used in designing the classifier. After the

classifier has been designed, the vectors selected for testing are presented to the classifier

and its responses are recorded, but the classifier is not redesigned using the testing data.

The hold out method does not efficiently use the available data since presumably a better

classifier could be designed using all the vectors in the database. In fact, the hold out

method in general gives pessimistic results regarding classifier performance (6:355).

A second method for partitioning the data is the hold one out method (6:356-357).

In the hold one out method, the classifier is designed using all the data except for one

vector which is then tested on the classifier. Then another vector is held back and the

classifier is redesigned and tested. This process is repeated for every vector in the database.

The error rate is then computed from the number of vectors which were misclassified.

For a multilayer perceptron, this means performing the training of a network for every

vector in the database. While computationally intensive for large databases, this method
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Comparison of Kalman Models on XOR Training
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Figure 6. Comparative Performance of Extended Kalman Training on the Exclusive-OR
Problem using Different Driving Noise Models up to 10,000 Iterations

gives better estimates of the error rate (or classification accuracy). This method uses the

available data more efficiently than the hold out technique. Also, the hold one out method

provides unbiased estimates of the error rate (or classification accuracy) (6:356). The hold

one out method is preferred where practical; however, the requirement to train a multilayer

perceptron once for each vector in the database can be computationally prohibitive.

2.4.2 Confidence Interval Techniques The method of confidence intervals pro-

vides information as to the reliability of the performance figures reported. Commonly,

figures of merit are reported as a single number. For example, one might say the accuracy

of a classifier is 85 percent. This is called a point estimate. Obviously, since the classifier

is tested on a finite data set, the true accuracy is not 85 percent; rather it is probably in

some interval centered about the point estimate. A confidence interval for the accuracy of

a classifier specifies the probability that the true accuracy lies within an interval. In the

preceding example, the 95 percent confidence interval might be 80 to 90 percent meaning
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that with 95 percent probability the true accuracy of the classifier is between 80 and 90

percent where true accuracy is the accuracy when tested on all possible inputs. This type

of confidence interval will be termed the Classifier Confidence Interval.

A second type of confidence interval will also be used in this dissertation which will

be termed the Monte Carlo Confidence Interval. Suppose some experiment is performed,

such as training a multilayer perceptron, and that some figure of merit produced by the

experiment is a random variable. In the multilayer perceptron, it might bc the total error,

ET, after training. The total error is a random variable because its value is influenced

by the initial weights that are randomly chosen and the order of presentation of training

vectors which is random. Since the figure of merit is random, it is desirable to quantify its

variability. Several experiments are performed and the figure of merit is recorded for each

experiment. For the multilayer perceptron, several training sessions are performed on the

same architecture network using different random weights and order of presentation of

training vectors for each session. It would be possible to produce a point estimate for

the figure of merit by simply averaging its value for many experiments, but this estimate

would not give any indication of its reliability. Again, a confidence interval on the average

value of the figure of merit will provide an indication of its reliability. In the multilayer

perceptron case, suppose the average total error is 0.02 for 100 training sessions and the 95

percent confidence interval is 0.01 to 0.03. (A slight digression is required here. Actually,

the total error, ET would probably not be used -ince it is dependent on the size of the

training database. As the number of vectors in the database increases so will, necessarily

the total error; hence, a better figure of merit would be total error per training vector,

ET/P. This value is independent of the size of the database and gives a better indication

of how well the network has learned the database.) The confidence interval for the average

figure of merit will usually shrink as the number of experiments is performed. For the

multilayer perceptron, the confidence interval for the total average error indicates how

well the network can learn the database on average. Note that the average total error is

being characterized not the total error for one single training session. Note that the Monte
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Carlo technique is not restricted to classifiers but can be applied to any experiment where

the outcome is a random variable. The following will review the mathematics applicable

to both of these confidence interval techniques.

Consider first the Classifier Confidence Interval technique. Suppose a classifier is

designed and then tested with P test vectors. Let the true error rate, E, be the error rate

that would be measured by testing every possible input vector. Note that E represents an

error rate while ET is the total squared error difference between the desired output and the

actual output of the network. Supposing also that L vectors are misclassified, then true

error rate, E, for the classifier might be estimated using

L 
(12)

P

Now when the number of test vectors, P, is large, there is greater confidence that the

measured error, E, is closer to the true error rate, E than when P is small. Assuming that

the test set is a random sample of the feature vector distribution, then the measured error,

E, is a random variable. An expression for the measured error rate in terms of the sum of

Bernoulli random variables ca; be written as (6:346-347)

Pl

where
((Xi)= 0 if xi correctly classified

1 if x, incorrectly classified

To a high degree, ((x) can be approximated as a Bernoulli random variable which makes

k a binomial random variable. Assuming that E is a binomial random variable, it can be

shown that Equation 12 gives the maximum likelihood estimate for E, the true error rate.

Also, the mean of k is E and the variance is E( 1 - E)/P (6:347). Thus the estimator is

unbiased and consistent. Using the Gaussian approximation to the binon'al distribution
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of t and approximating the variance by E( I - E,)/P, it can be shown that

Prob{E - z&{E} < E <Fk + z&'{E}} -

where &t{E} is the square root of the estimated variance of k, and z and -y are controlled

by the standard Gaussian distribution on k. For a confidence level of 95%, z = 1.96 and

= 0.95 while for a confidence level of 90%, z = 1.64 and -y = 0.90.

The Monte Carlo Confidence Interval technique has a slightly different basis than the

Classifier Confidence Interval technique. The goal here is to characterize the performance

of a multilayer perceptron as a function of the initialization of the weights and the order

of presentation of training vectors. In this case, the error rate measured from a single

training session (or run) on the multilayer perceptron is considered a random variable.

Let E represent the measured error rate for a trained multilayer perceptron. Thus, E is a

random variable depending on the initial weights and presentation order for a network.

The distribution of E is unknown. Let .,, i = 1,... ,-7, be the realization of 8 for the

ith training session. It is assumed that the 8, are independent and identically distributed

since the weights were randomly initialized using a different and randomly chosen seed

for the pseudorandom number generator and likewise the presentation order was random

and different for each run. Also, the distribution of Si is assumed to be the same as 9. It is

desired to characterize the error rate, 8. The following technique will provide an interval

estimate of the mean of 8. That is, the expected error rate will be estimated. Let the mean

and variance of £ be as follows:

E{8} = m

o2{e} = b2
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where E{.} is the expectation operator and a2 {.} is the variance of the argument. The

goal is to find an interval estimate for m. Let the estimate for m be

- I n
r -- i

n i=1

which is unbiased and consistent. Now consider the following interval estimate for the

mean:

Prob{a < fh- m < b}

where a, b, and - are determined by the distribution of 712 - m. It is easily shown that

m - m is approximately a Gaussian random variable with zero mean and variance of b2/1.

The actual variance of E, b2 can be estimated as follows:

b2 -7i)
2

which is unbiased (10:130). Now the interval estimate can be restated as follows:

Probfiui - Ab < i < iih + A zb} -

where z and -y are determined by the standard Gaussian distribution. As with the Classifier

Confidence Interval, a 95 percent confidence is given by z = 1.96 and -y =-0.95, and the

90 percent confidence interval implies z = 1.64 and -y = 0.90.

These two confidence interval techniques serve different functions. The Monte

Carlo method is used primarily to determine the average performance which can be

expected from a multilayer perceptron when trained on a given problem. Its purpose is to

provide a way to discount the variability of performance results as a function of the initial

weights and the presentation order. The Classifier method on the other hand is used strictly

for classification performance and specifies an interval within which the true error rate

lies with some given probability. In this dissertation, the Monte Carlo Confidence Interval

method is used to compare training algorithms on a multilayer perceptron classifier. By
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Table 1. Comparison of Monte Carlo and Classifier Confidence Interval Methods

Monte Carlo Classifier

Attempts to characterize performance as a Attempts to determine the true error rate
function of the initial weights and presen- for the classifier.
tation order.

Used to compare training algorithms for Used to compare the multilayer perceptron
multilayer perceptrons. classifier with traditional classifiers.

Applies to any random variable of the Applies only to classification accuracy or
training process. error rate.

Width of interval primarily controlled by Width of interval primarily controlled by
the number of training runs. the number of test vectors.

Results based on the application of the Results based on approximation of the
Central Limit Theorem to the random vari- measured error rate by a binomial random
able measured. variable.

using this technique to compare learning algorithms, it is possible to factor out differences

that occur due to different initial weights and presentation order. Generally, the algorithms

are compared on synthetic data for which the solution is known a priori. On the other hand,

the Classifier Confidence Interval method is applied when bounds on the true error rate

is desired for comparison of the multilayer perceptron classifier with other classifiers. In

this case, the data is normally sensor data for which the ideal solution and minimum error

rate are not known. Table 1 summarizes the differences between these two confidence

interval techniques. Figures 7 and 8 summarize the pertinent equations.
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Figure 7. Summary of Equations for Monte Carlo Confidence Interval Technique

The mean and variance of the error rate are

E{&} = m
a2{£} = b 2

The mean and variance are estimated by

n =

I n - rn) 2

where n is the number of training sessions. The interval estimate is

Prob{ih - z < m < ri + zAb} z -t

where z and - are determined by the standard Gaussian distribution.

Figure 8. Summary of Equations for Classifier Confidence Interval Method

The measured error rate is given by

L
P

where P is the total number of test vectors and L is the number misclassified. The
mean and variance of the measured error rate are

E{E} = E
0a2{1k} = E( - E)/P

where E is the true error rate. The variance of the measured error rate is estimated as

&'{E} = E(l - E)/P

The interval estimate on the true error rate is

Prob {E- z&{E} < E < E + z&{E}}

where 6{E } is the square root of the estimated variance of E, and z and -Y are
controlled by the standard Gaussian distribution.
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III. Feature Selection -

Analyzing the Weights in a Multilayer Perceptron

3.1 Introduction

In this chapter, a novel technique for analyzing a trained multilayer perceptron will

be presented. This technique, called the saliency metric, allows the determination of how

the inputs affect the classification performance of the network. This provides a method for

selecting which input features to use in the final classifier design as well as a vehicle for

the comparison of learning rules. Through the examination of the weights in two identical

networks trained with different learning algorithms, it can be seen how the learning rules

result in different networks or similar ones. The following section will explain why the

input features to a classifier should be limited. In Section 3.3, the conventional techniques

for feature selection will be reviewed. After that the saliency metric will be introduced

and shown to be consistent and useful.

3.2 Why Limit Input Features?

The first consideration when designing a classifier is what features to use as inputs.

The initial temptation is to use a large number of features since each feature hopefully

provides some information regarding classification. However, the number of features

must be limited for several reasons. The primary reason for limiting the number of

input features is known as the curse of dimensionality (6:187) (7:95) which requires that

as the number of features grows the size of the training set required to characterize the

distribution of the vectors grows exponentially. Since it is very expensive to collect

labeled data for classification, training sets are by their nature small.

Foley's Rule (9) provides some guidelines as to the minimum number of training

samples required for accurate classification as a function of the input features. Foley

showed empirically that the number of training samples per class should be greater than
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three times the number of features. When this condition is satisfied, the error rate on

the training set will be close to the error rate on an independent test set. His results are

limited to two class discrimination and a multivariate Gaussian distribution of the input

features, but the results could be more general since two key variables in his derivations

were sums of independent, identically distributed variables (9:623). Thus, for most

practical distributions the variables will approach Gaussian distributions by the Central

Limit Theorem. Also, Cover has shown that if the total number of training samples is less

than twice the number of features, then there exists a hyperplane which can separate the

training data perfectly even if the two classes are generated by the same distribution (3)!

Hence, an absolute minimum number of training vectors per class is equal to the number

of input features, but greater that three times the number of features per class is desirable.

Another reason for reducing the number of input features is to minimize the

complexity of the classifier. In general, as the number of input features increases, the

time to classify an input vector increases unless special purpose parallel hardware is used.

Also, the number of free parameters in the classifier may increase with the number of

features. A large number of free parameters in the classifier may allow overfitting to the

training data with resultant poor performance on independent test data. The work of Baum

and Haussler (I) provides some guidelines for the number of training vectors required

as a function of the number of weights in the network and the desired error rate. They

suggest that the number of training vectors, P, be greater than S/e where S is the number

of weights and thresholds in the network and c is the desired error rate on an independent

test set. Hence, if an accuracy rate of 90% is desired on the test set, then the number

of training vectors in the test set should be at least 10 times the number of weights and

thresholds in the network.

3.3 Conventional Feature Selection Techniques

It is clear that it is critical to be able to determine from a set of potential features

which provide the best discrimination and which are worthless. The optimal technique
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for feature selection requires implicit examination of every subset of the set of features

under consideration (6:207-214). This requirement leads to a combinatoric explosion in

the computations required and is, therefore, impractical. Several suboptimal methods are

available for selecting a subset of features (6:214-223). The method used by Roggemann

in his dissertation (19:71-76) will provide the baseline for comparing the results of the

multilayer perceptron-based solution presented here.

Roggemann used the best features or single probability of error criterion approach.

This technique computes the probability of error on the training set using each feature

individually in succession. These error rates are then rank ordered and the Al features

with the lowest probability of error (P) are selected (6:215-216). This method has the

advantage over the optimal method in that the numerical complexity grows linearly with

the number of features; however, it fails to consider the relationships between the input

features. Two features with a fixed relationship between them and each giving a low P

would both be selected using this method although the second feature gives no additional

information.

3.4 The Saliency Metric

3.4.1 Introduction A novel technique will be presented here to determine which

features are useful for classification using a multilayer perceptron and which features

are useless. The technique also provides a way to compare the performance of different

learning rules and a way to analyze the behavior of multilayer perceptrons. The saliency

metric is also described by Ruck et al in (27). The next section will present a derivation

of the saliency metric followed by a test of the consistency and utility of the metric. The

final section of this chapter shows the results of comparing learning rules for multilayer

perceptrons using the saliency metric.

3.4.2 Derivation of Saliency Metric The network analysis technique developed

examines the responsiveness of the network outputs. The sensitivity of the network
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outputs to its inputs is used to rank the input features' usefulness or saliency. First, an

expression for the derivative of an output with respect to a given input will be derived;

then it will be shown how this can be used to create a measure of the sensitivity of a

trained multilayer perceptron to each input feature.

The notation to be used throughout is as follows. Superscripts always represent a

layer index and not a quantity raised to a power unless otherwise indicated. The layers

are counted from the first layer of nodes which compute the sigmoid of a weighted sum.

Thus, Layer 1 is the first layer of hidden nodes and not the inputs. The output of node i

in Layer j is denoted by xi. Input i is represented by xi with no superscript, and output

i is represented by zi. For the weights, the first subscript denotes the source node, and

the second denotes the destination. The superscript on weights represents the layer of the

destination node. Hence, wi, is the weight connecting node i in layer k - I to node j in

layer k, and 0k is the threshold associated with node j in layer k.

Consider again the network in Figure 2 which is repeated here for convenience as

Figure 9. It is desired to calculate the derivative of output zi with respect to input xj.

Suppose each of the nodes in the network performs a weighted sum of its inputs plus a

threshold term and puts the result through a sigmoid as shown in Figure 10. To compute

the desired derivative, all that is required is some simple calculus. Using the fact that the

derivative of that sigmoid is the output times one minus the output yields,

- = zi(l - zi) (a')

where a 3 is the activation of node i in layer 3. Activation is the weighted sum of the inputs

plus the node threshold. The activation of node i in layer k is denoted by a . Substituting

the expression for the activation gives

xj - Zi(1 - z)+ o3)
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The summation is over all nodes in layer 2. Applying the derivative to this expression for

the activation produces

19zi Zz E1W3 ) X--X2 a 2
= ,1- - x

Oa j ,= •iMr x

Let 6 = zi(1 - zi). Then

02__ 2Wr 2(
az 3 3 231_X

Continuing the process through two more layers yields

= 3 3 , 61--' (13)
I- -- Wmini nmn n jn

Oxj 72 n

where
652 = x2,(1- x2)

6 x'(1 .,)

Note that the derivative of the output with respect to the input (Equation 13) depends not

only on the weights in the network, the wij, but also on the current outputs of the nodes

in the network, the x and the network outputs, zi. Thus, the derivative depends on the

current input to the network as well as the network weights.

The dependence of the derivative of the outputs with respect to the inputs on the

current input to the network forces the evaluation of the derivative at a set of points in the

input space. Ideally, each input would be independently sampled over its expected range

of values. Suppose R points were used for each input. Then the total number of points

the derivatives would be evaluated at would be R"M where Al is the number of inputs. As

an example, suppose 22 features were being evaluated, and 20 points in the feature space

were sampled over the expected range of each feature. In this case, R = 20 and M = 22,

so the number of points at which the derivative must be evaluated is approximately 1028.

If 106 derivative evaluations could be performed each second, it would take about l0 5
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years (or about one million universe times) to evaluate all the derivatives. Even for this

small example the number of computations is intractable. Obviously, as the number of

inputs grows the number of derivative evaluations increases tremendously. In fact, this

is an NP-complete problem. Since the input space cannot be sampled uniformly, it is

desired to sample it at the important points. The points of greatest importance in the

input space are those where training data exists; hence, the training vectors are used as

starting points to sample the input space. For every training vector, each input is sampled

over its range while the other inputs are determined by the training vector currently being

evaluated. Suppose there are P training vectors, then the number of derivative evaluations

is PAIR. Continuing the above example, suppose 500 training vectors are available. The

number of derivative evaluations is 220,000 which would take about one-fifth of a second

to compute. Now the number of evaluations increases linearly with the number of inputs,

31, which is computationally tractable.

A measure of the saliency of an input can now be formulated as follows. Let Aj,

the saliency of input j, be defined by

Aj_=Z - L (x,w) (14)
XEX i xED j

where x indicates the .,l-dimensional vector inputs, X is the set of P training vectors,

w represents the weights in the network, Dj represents the set of R points for input xj

which will be sampled. Normally, Dj is a set of uniformly spaced points covering the

expected range of input xj. Using this method, the derivatives are not computed at the

exact training points, but can be computed arbitrarily closely by increasing the number of

points in Dj. It is believed that in a high dimensionality input space, having all inputs

except one set to the values of a given training point results in evaluation of derivatives

sufficiently close to the the actual training vectors for the purposes of the saliency metric.

Note that the dependence of the derivative of the output, z,, with respect to the input, x ,

on the weights, w, and the input to the network, x, is explicitly shown in Equation 14.
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Two questions now need to be asked. Is this metric consistent with existing statistical

techniques and independent of network initial conditions? Specifically, does the ranking

of the Aj actually correspond to the importance of the inputs as determined by the single

feature probability of error method? This is the utility question. Second, will the ranking

of the Aj be independent of the initial network conditions? In other words, is the saliency

metric consistent? The next section will address these questions.

3.4.3 Test of the Saliency Metric In this section, the consistency of the saliency

metric developed in the previous section will be examined followed by a test of the

actual utility of the metric. The first test consisted of training 100 networks on a set

of image recognition data. The classification problem consisted of using a set of 22

moment invariants computed from objects segmented from doppler imagery to determine

the type of object. These features were chosen for this recognition task because they have

previously been shown to be effective for PSRI aircraft recognition using conventional

techniques (8). There were four object classes: tank, jeep, 2.5-ton truck, and oil tanker

truck. The pq ordinary moment of an object is an integral over the object of the factor

TPy q . That is,

Alpq = 1 g(x, y)xPyqdxdy

where Mpq is the pq ordinary moment of the function g(x, y). In this case, the function

g(x, y) simply represents the silhouette of the segmented objects. These moments are then

scaled to provide invariance to changes in either the position or size of the object. Moment

invariants are created by combining individual scaled moments so that the resulting

feature is invariant to changes in rotation of the object in the viewing plane. Thus, the

moment invariants are unchanged by differences in position, scale, or in-plane rotation of

an object. See (24) (28) for more information on this recognition problem.

Each network was started with a different set of random weights. The order of

presentation of the training data was random and different for each training session. The

momentum method was used for training with q; = 0.3 and o = 0.8. After each network
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was trained, the saliency of each input, Aj, was calculated. For each network, the rank of

every input was computed from the sorted ordering of the saliency metric. The input with

the lowest Aj, indicating the least sensitivity of the output to that input, was ranked zero;

and the input with the highest was ranked number 21. Next a histogram was computed

for each input using the 100 different networks indicating the number of times the input

had a given rank. Ideally, the rank of a given input would be independent of the network's

initial weights and presentation of the training data. In that case, the histogram for an

input would be a single spike at the rank of the input. Figure 11 shows the histograms

for three of the 22 input moment invariants. The three features selected are representative

of the types of distributions observed for all the features. The distribution about rank 21

represents a feature that was consistently determined to be important using Equation 14.

The distribution spread across the middle rank values represents a feature which does not

provide significantly more information than approximately 10 of the other features because

the median of the distribution is near rank 11. Finally, the distribution that is dominated by

low values represents a feature that is consistently found to be uiimportant independent

of the network initial conditions. It is possible from the histograms to produce an overall

ranking of the saliency of the inputs. Alternatively, the saliency metric can be averaged

for a given feature over all networks trained. The average saliencies can then be ranked

to yield an overall ranking for the input features This approach yields nearly identical

results to the histogram method. As a preliminary test of the utility of the saliency metric.

the three features ranked most important using saliency and their associated weights were

eliminated from a trained network and the classification accuracy dropped from 85 percent

to below 50 percent. Also, the three least significant features according to the saliency

metric and their weights were eliminated from a trained network which resulted in no

degradation of classification accuracy.

In summary, the saliency metric is a consistent measure of the ranking of the input

features. As the histograms indicate, there is some variation in the ranking as a function of

the initial weights of the network. Those features of mid-level importance have the widest
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Figure 11. Rank Histograms of Saliency Metric for Three Moment Invariants. Each
feature is displayed using a different fill pattern. The moment invariant
feature represented by the unshaded bars ranging in rank from 0 to 8 shows
very little saliency, meaning that this feature provided little information in the
pattern classification process. The darkly shaded bars ranging in rank from
5 to 15 represent a momcnt invariant feature which in most cases provided
less information for classification than approximately ten other input features.
The feature represented by the medium shaded bars ranging from rank 19 to
21 has a great deal of saliency and provided much information in classifying
the input patterns.
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variation indicating that the network can choose from several of the mid-level features for

discrimination.

The next question to be answered is whether or not this saliency metric is useful.

As previously stated, a preliminary test indicated that it would be useful for determining

which features to select; hence, a more rigorous test was devised. In this test, the problem

was to identify targets from non-targets in forward looking infrared (FLIR) images where

targets consisted of tanks, trucks and armored personnel carriers (APCs). A set of nine

features were extracted for this purpose. The features chosen have previously been shown

to be effective using conventional techniques (19) (20) (21). The features are listed in

Table 2. These features were ranked using the probability of error criterion The feature

with the lowest probability of error was given the highest rank and vice versa. This

ranking provided the baseline for evaluation of the utility of the saliency metric developed.

Note that these features and the probability of error criterion were used by Roggemann;

hence, his work provides a baseline for this neural network approach.

As with the consistency test, 100 networks were trained on the same data with

different random initial weights and a different random order of presentation of the

training data. Histograms of the ranking of the input features were constructed. The

histograms of three representative features distributions are shown in Figure 12. The

ranking of the features by the probability of error criterion and the saliency metric is

shown in Table 3. Note that the two methods of ranking the data are in agreement for the

top two and bottom two features. As a further test of the utility of the saliency metric,

the accuracy of classifiers designed using the top three features from each ranking were

compared. Table 4 shows the results when the classifiers are tested using the hold one out

method. The classifier confidence interval technique was used to produce the estimates of

the true classification accuracy for each classifier. Note that the accuracy rate differences

between the classifiers using the top three features of either ranking are negligible. Hence,

the saliency metric does provide a useful measure of the significance of input features.
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Table 2. FLIR Features Evaluated

[ Feature ( Description

Complexity Ratio of border pixels to total object pixels

Length/Width Ratio of object length to width

Mean Contrast Contrast ratio of object's mean to local
background mean

Maximum Brightness Maximum brightness on object

Contrast Ratio Contrast ratio of object's highest pixel to
its lowest

Difference of Means Difference of object and local background
means

Standard Deviation Standard deviation of pixel values on ob-
ject

Ratio Bright Pixels/Total Pixels Ratio of number of pixels on object within
10% of maximum brightness to total object
pixels

Compactness Ratio of number of pixels on object to num-
ber of pixels in rectangle which bounds
object
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Figure 12. Rank Histograms for Three FUIR Imagery Features. Each feature is plotted
using a different fill pattern. The FUIR feature represented by the unfilled
bars shows little saliency and, thus, did not provide much information for
classifying the input patterns. The darkly shaded bars represent a FUR
feature with a moderate degree of saliency providing some information for
classification. The feature shown with the lightly shaded bars has a large
saliency and provided much information for classifying the FLIR objects.
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Table 3. Ranking of FLIR Features

P Saliency
Criterion Metric Average

Feature Rank Pe Rank Saliency
Complexity 8 0.210 8 0.473
Length/Width 7 0.244 7 0.403
Difference of Means 3 0.311 6 0.323
Standard Deviation 2 0.317 5 0.300
Mean Contrast 6 0.259 4 0.275
Contrast Ratio 4 0.296 3 0.272
Maximum Brightness 5 0.296 2 0.223
Compactness 0 0.357 1 0.199
Ratio Bright Pixels/Total Pixels 1 0.350 0 0.192

Table 4. Estimated True Classification Accuracies of Two Feature Subsets (95% confi-
dence interval is shown)

Bes t 3 Best 3
Classifier Pe Features Saliency Metric Features

Bayesian w/ Parzen Windows
(a = 0.1) 90.3-94.7% 91.3-95.5%
k-Nearest Neighbor (k = 1) 90.5-94.9% 90.3-94.7%
Multilayer Perceptron
(3-5-2,1 = 0.3,a = 0.8) 88.3-93.1% 87.7-92.7%
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3.4.4 Application to Learning Rule Evaluation In this section, the saliency metric

will be used to compare two learning rules for multilayer perceptrons. As stated in

Section 2.3.1, there are several learning rules available for determining the weights in

a multilayer perceptron. Two will be compared here. The traditional backpropagation

and the extended Kalman filtering approaches will be considered. The question to be

considered is whether or not the Kalman approach would use the features in a different

way than the backpropagation approach. That is, would the importance of the inputs

for backpropagation differ significantly from those for extended Kalman filtering? The

Kalman filter (not the extended one) is optimal in several metrics of optimality. The

estimates produced by the Kalman filter are the mean, mode, and median of the random

variable being estimated. It is also the maximum likelihood estimate as well as the

minimum mean squared error estimate (10:231-236). These traits do not carry over to the

extended Kalman filter; nonetheless, it is a powerful estimation algorithm. A disadvantage

of the extended Kalman filter algorithm is its computational complexity, O(S 3 ), where

S is the number of weights and thresholds in the system while backpropagation with

or without momentum is only 0(S). The computational complexity is the number of

arithmetic operations required to perform a single update of the weights in the network. It

is hoped that backpropagation would find a similar solution to the classification problem,

in terms of weighting the importance of input features, as the extended Kalman filter

algorithm at a much lower computational cost.

The doppler image data with the four classes (p. 38), which was used to test the

consistency of the saliency metric, provided the test data. One hundred networks were

trained with the extended Kalman filtering approach using the same data, initial weight

values, and presentation order of training vectors as the 100 which were trained using

backpropagation. Thus, the only difference between the two sets of 100 networks was

the training method employed. Figure 13 shows the histograms of the ranking of the

same three input features used as examples in Figure 11 (p. 40). Compare these with the

histograms in Figure 11. Note that while there are some differences between the two, the
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ranking of the features is mostly the same between the two training methods. Hence, the

two training rules place equal relative emphases on the input features. Table 5 shows the

average saliency values computed for all twenty-two features for both training methods.

3.5 Conclusion

In this chapter, a new technique for ranking the importance of features for a multilayer

perceptron has been developed. The saliency metric has been shown empirically to be

both consistent and useful. When compared with the traditional method of ranking input

features by the probability of error criterion, it performed as well and resulted in a similar

ranking for the input features. Also, backpropagation was compared to extended Kalman

filtering using the saliency metric. It was found that both methods for setting the weights

in a multilayer perceptron place equal relative emphases on the features. The saliency

metric gives a clear indication that multilayer perceptrons are able to effectively ignore

useless inputs as indicated by the test results. This fact gives insight into the behavior of

multilayer perceptrons with respect to sensitivity to features.

One extension to the saliency metric is its application to the hidden nodes in a

multilayer perceptron. The outputs of the hidden nodes are inputs to the following layer;

hence, the saliency of the hidden nodes can also be computed. Thus, it should be possible

to eliminate unnecessary hidden nodes using this technique. Also, conceptually the idea

of the saliency of weights in a network is possible. This method should, hence, also be

extensible to computing the saliency of weights in the network yielding a method for

pruning the weights in a network. Future research into this area will, hopefully, provide a

method for automatically sizing the hidden layers in a multilayer perceptron.
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Figure 13. Rank Histograms for Three Moment Invariants Using Kalman Approach.
The same three features are displayed as those in Figure 11 using the same
fill patterns. Comparing each of the three histograms with those in Figure 11
shows that the Kalman approach and backpropagation place equal relative
emphases on the input features.
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Table 5. Average Saliency Values on Doppler Recognition Data for Extended Kalman
Filtering and Backpropagation Training Algorithms

Backpropagation Kalman
Average Average Feature

Rank Saliency Rank Saliency Index

0 0.13 1 0.26 6
1 0.14 2 0.26 9
2 0.15 0 0.24 7
3 0.17 3 0.26 17
4 0.21 4 0.27 10
5 0.22 6 0.33 4
6 0.33 5 0.33 20
7 0.34 15 0.58 16
8 0.35 11 0.47 5
9 0.38 9 0.38 8
10 0.42 7 0.36 11
11 0.43 8 0.38 1
12 0.44 10 0.41 12
13 0.44 12 0.48 14
14 0.53 14 0.48 15
15 0.56 13 0.48 3
16 0.76 16 0.69 2
17 0.80 19 0.82 21
18 0.82 18 0.74 18
19 0.91 20 0.95 19
20 0.96 17 0.73 0
21 1.16 21 1.00 13
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IV. Understanding the Backpropagation

Training Algorithm

4.1 Introduction

The previous chapter described a technique for deciding which features to use for

classification in a multilayer perceptron. After the set of features has been determined,

the network must then be trained using some training algorithm. This chapter will

analyze the popular backpropagation training algorithm in the context of the well-known

and understood technique of extended Kalman filtering. It has already been shown that

backpropagation and extended Kalman filtering place equal relative emphases on the input

features. This suggests that the techniques may be related somehow. It will be shown that

backpropagation is actually a degenerate form of extended Kalman filtering for training

the weights. Several examples using both synthetic data and sensor data will highlight the

differences and similarities between the training algorithms.

4.2 Degenerating Kalman to Backpropagation

It has been known for some time that backpropagation is a gradient descent procedure

for setting the weights in a multilayer perceptron when performed in the batch mode (14)

(31) (35). However, instantaneous backpropagation is only approximately a gradient

descent procedure. That is, the gradient is computed for the error surface defined by the

immediate training vector only and not the ensemble of training vectors. An alternate

interpretation of backpropagation is proposed here, namely, as a degenerate form of the

extended Kalman filter.

In this section, it will be shown how the extended Kalman filter approach to setting

the weights in a multilayer perceptron can be degenerated into the backpropagation

algorithm. The following section will consider the implications of this result and the

assumptions required to obtain it.
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First, recall the equation for instantaneous backpropagation (Equation 2, p. 15):

W+  =- - - 7 - ,

which can be rewritten for the weight w , as

Awj aO .
=w~ - Ol

Now simplify using Equation I (p. 14):

N &2k

Aw'j= 11 -(dkp -- k,p) a (15)
k=1 I

Recall that the p subscript refers to the current training vector input and A' is the number

of outputs. Equation 15 is simply another way of stating the backpropagation training

rule.

Now, consider the update to .bi, the ith component of ', the Kalman filter estimate

of the optimal states of the network. From Equation 4, the change in i', is

Azbj = Kj(d - z)

where K, is the ith row of K and i = I, .... ,S with S the total number of weights and

thresholds in the network. Recall the equation for the Kalman gain matrix (Equation 5,

p. 18):

K = PHT[HPHT + RI-'

where the time dependence has been suppressed for notational convenience. Let the

inverted quantity be denoted by A. That is, let

A = [HPHT + R]-'
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Then

K=PHTA

Now suppose that A is of the form

A=aI

where I is the N by N identity matrix and a is a scalar. Recall N is the number of outputs

of the network. Then

K = aPHT

So

Ki = aPjHT

where Pi and Ki are the ith rows of P and K, respectively. Now compute IC,,.

S S

Kij = a E PikHT = a Z PikHjk
k=1 k=1

With IAij, the update for ii can be determined.

AZ&i = Kj(d - z) (16)
N

= K(dj - zj)
j=!

N S

= E aPkHjk(dj -zj)
j=1 k=1

Further assume that P is diagonal. Then

N

A~i = E aPiHj,(dj - z)
j=1

To relate this to the previous backpropagation weight update equation, use Equation 7

(p. 19) to obtain
N azj

Au,, = Z(dj - zj)aP,,i-
j=1

51



where the hat notation has been dropped simply to elucidate the similarities between

the backpropagation training rule and the degenerated Kalman training rule. One final

assumption will produce the backpropagation update rule. Suppose that P = pl. Then

Aw =apN A - j)izj

j=

which is the backpropagation rule (Equation 15) with qj = ap.

The assumptions required to obtain this result were

1. [HPH T + R]-I = aI

2. P(t,) = pl

In the next section, the significance of the assumptions will be considered.

4.3 Implications

The previous section demonstrated that backpropagation can be considered a

degenerate form of the extended Kalman filter. This section will examine the assumptions

required to obtain this result and consider its implications. Consider how the extended

Kalman filter would operate when implementing backpropagation. Only two modifications

to the usual algorithm are needed. First, the matrix inversion required by Equation 5 is

replaced by using a constant matrix equal to aI in its place. Second, instead of propagating

the P matrix, its value is held constant at pl. Thus, the update equations become

w(t, ) = *(t.) + K(ti)[d(t,) - z(t,)] (17)

K(ti) = P(tF)HT(tt)a

P(t+- = P(t-)

and the propagation equations are

*(t+ (18)
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P(t-,) = P(t + ) (19)

with the initial conditions of w(to) and P(to) = pl. Also, no driving noise is being used in

the system model. Compare these update and propagation equations with those presented

in Section 2.3.2 (Equations 4 - 6 and 10 - 11).

Now consider the significance of the assumptions required. Assumption 2 is easier

to understand, so consider that first. The assumption is that P = pl. From the propagation

equation (19), it is apparent that if P starts in this form, it will remain in that form

because P is not altered during propagation. The assumption that P starts diagonal is not

significant. It merely states that there is no knowledge regarding the cross correlation

of initial errors in the weights which is a reasonable assumption. However, the lack of

propagation of the P matrix is significant. It states that the filter (backpropagation) is

not using any information to update its knowledge of the errors in the weights as training

proceeds. Thus, as training progresses the weights are updated the same amount even

though previous training should decrease the errors in the weights; and, hence, the weights

should be changed less based on the current residual (the residual is the difference between

the desired output and the actual output, i.e., d(4.) - z(ti)). As a side note, this aspect

of Kalman training provides the motivation for decreasing the training rate, 77, over time.

Also, by maintaining the diagonal form of P, backpropagation is assuming that the errors

in the weights are uncorrelated which is not the case. Since the relationships between the

weights are known, namely, the weights in the upper layers contribute to the derivative of

the outputs with respect to weights in the lower layers, then there is useful information in

the off-diagonal terms of P. Because backpropagation discards the off-diagonal terms, it

does not use all the information which is available to it.

Assumption I is more difficult to interpret. It says that the result of inverting the

matrix in Equation 5 is a constant of value al. . ;uming that R(t,) = el and using
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Assumption 2, we obtain

[HPHT + R]- 1 = [pHHT + El]- 1

The assumption that R is proportional to the identity matrix is reasonable since R represents

the uncertainty in the measurements from the system (i.e., the multilayer perceptron's

outputs) and there is no reason to believe the noise in the outputs is correlated because

the weights going into the final output nodes are independent of each other. In order for

tht, inverse to be al requires that HHT = bI for b > 0. This condition will be true when

the rows of H are proportional to an orthonormal set, i.e., the rows must be mutually

orthogonal and the length of each row vector of H must be vFb. In general, these conditions

are not satisfied. Particularly, since the row entries of H are derivatives of a fixed output

with respect to all the weights in the network, there is no guarantee that all the row vectors

will have the same length. However, when these conditions are satisfied,

[HPHT+RI- 1 = I
pb + E

Since these conditions are not, in general, satisfied, it is clear that backpropagation throws

away information that would otherwise be useful in updating the weights.

The following section compares the performance of backpropagation to Kalman

filtering on several different examplcs. These examples will demonstrate that Kalman

filtering outperforms backpropagation in most cases.

4.4 Performance Comparisons Between

Back1 ropagation and Extended Kalman Filtering

In the previous section, it was demonstrated that backpropagation can be considered

a degenerate form of extended Kalman filtering. In the process of degenerating the Kalman

filter, information was discarded which is useful in setting the weights. This section will

examine the comparative performance of backpropagation and Kalman filtering on four
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example problems.

The first problem is known as the exclusive-OR (XOR) problem. Suppose that

a classification problem is given such that vectors composed of two features must be

classified into two categories. Let x be the feature vector and w, and w2 be the two

categories. Further assume that the vectors can be classified as shown in Figure 14. A

set of of 1000 training vectors was generated from a uniform distribution on the region

[0, 1] x [0, 1]. Each of the training vectors was classified using Figure 14. For a vector in

class vi the associated desired output was a vector with all entries of 0.1 except for the

entry i whose value was 0.9. These values were chosen because the sigmoidal function

of the individual nodes (f(o) in Figure 3, p. 12) could achieve values of zero and one

only for infinite inputs. Attempting to train to zero and one will push the weights towards

large values. A single hidden layer network was trained on this set of vectors using

backpropagation, momentum, and extended Kalman filtering. The number of hidden layer

nodes was chosen to be four because Singhal claimed the Kalman algorithm was able to

find a correct solution ninety percent of the time with four nodes (34). Thus, there were

two input nodes; four hidden layer nodes; and two output nodes (one for each class). This

network is described by the notation 2-4-2 where the first number is the number of inputs,

the second is the number of hidden layer nodes, and the last is the number of outputs.

The network's performance was tested during training on the set of vectors. Each

vector was input to the network and the output was observed. The network made a correct

classification when the maximum output corresponded to the class of the input vector.

Since the solution obtained by any of the training algorithms employed is dependent on

the initial state of the network, one hundred different initial states were chosen; and the

results were averaged over all one hundred training runs. Figure 15 shows the estimated

average classification accuracy of the network trained using three different learning rules:

extended Kalman filtering, backpropagation, and momentum as a function of the number

of training vector presentations (iterations). The 95 percent confidence interval of the

estimated average accuracy versus the number of training iterations has been plotted using
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Figure 14. XOR Classification Problem

the Monte Carlo technique. From the figure, it is readily apparent that Kalman filtering

achieves higher performnance more quickly than either backpropagation or the momentum

method when compared on the basis of iterations. Figure 16 shows the same data where

the computational complexity of the algorithms has been taken into consideration. That

is, the estimated average accuracy has been plotted as a function of the number of floating

point operations (FLOPS) required. Now it is seen that the Kalman algorithm requires an

order of magnitude more FLOPS to achieve the same accuracy as either backpropagation

or momentum.

The next example uses a more complex configuration of two dimensional decision

regions. Consider a four class decision problem where the feature vectors are two

dimensional and can be classified as shown in Figure 17. A set of 1000 training vectors

was uniformly distributed on the decision space. A network with two hidden layers of

ten nodes each was used for this example. This network is described as a 2-10-10-4

network since there are two inputs, four outputs, and two hidden layers of ten nodes
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Comparison of Learning Rules on XOR Data
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Figure 15. Average Training Accuracy versus Iterations for Kalman, Backpropagation,
and Momentum Training on the XOR Data (2-4-2 network). Kalman
parameters are E = 1.0 and q = 0.05. Backpropagation learning rate is
,q= 0.3 and the momentum factor is a = 0.8. The 95 percent Monte Carlo
confidence interval is shown for each training method.
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Comparison of Learning Rules on XOR Data
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Figure 16. Average Training Accuracy versus Floating Point Operations (FLOPS) for
Kalman, Backpropagation, and Momentum Training on the XOR Data (2-4-2
network). Kalman parameters are e = 1.0 and q =0.05. Backpropagation
learning rate is 77j 0.3 and the momentum factor is a =0.8. The 95 percent
Monte Carlo confidence interval is shown for each training method.
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each. The training classification performance for the three methods is shown in Figure 18

versus iterations. For the backpropagation and momentum learning rules the average

accuracy is plotted with 95 percent confidence using the Monte Carlo technique. A

single run of the Kalman learning rule on the problem is shown. The computational

complexity of the Kalman learning algorithm prohibited using the Monte Carlo confidence

interval technique. It can be seen from the figure that the Kalman method achieves higher

classification accuracy more quickly than either backpropagation or the momentum method

as a function of the number of training iterations. However, when the computational

complexity is accounted for, the Kalman algorithm requires three orders of magnitude

more computations than either backpropagation or momentum as shown in Figure 19.

Again, the 95 percent confidence interval is shown for backpropagation and momentum

while a single run is shown for the Kalman algorithm. As demonstrated in the figure,

the 100 runs each of backpropagation and momentum learning rules required an order of

magnitude fewer computations than a single run of the Kalman algorithm. Insufficient

computer resources thus prevented averaging multiple runs using the Kalman algorithm

since a single training session required approximately 100 billion floating point operations.

It is also possible to compare the performance of the training algorithms by

examining the decision regions formed by the networks at various points in the training.

Since the input is two-dimensional, the decision regions are easy to present graphically.

The decision regions formed by both the extended Kalman filter and backpropagation are

shown in Figure 20 after 26,600 iterations. Note that at this point the Kalman trained

network decision regions are very close to the actual class boundaries with the exception

of the small bump for class w, near the center. The backpropagation trained network

on the other hand does not closely approximate the true decision regions. Figure 21

shows the decision regions formed at two other points in the training of the network with

backpropagation. The decision regions formed at 140,000 iterations are reasonably close

to the true boundaries except for the small bump in the center again, and at 2 million

iterations the backpropagation trained network accurately approximates the true decision
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Figure 17. Mesh Classification Problem

regions including the small bump. It should be noted that the training data included

only 10 vectors in that small bump region for class ;, out of a total of 1,000 training

vectors. Also, the number of floating point operations for 2 million iterations on the

backpropagation trained network is approximately equal to 225 extended Kalman filter

training iterations.

The previous results have shown that the extended Kalman filtering algorithm

outperforms backpropagation in terms of training accuracy versus iterations but not in

terms of training accuracy versus floating point operations. The next two examples

consider the performance of the training methods on sensor data.

In the next example, the doppler tactical target data (p. 38) was used for comparing

the training algorithms. A set of 58 exemplars was used to train a 22-10-6-4 network.

The training classification accuracy versus iterations is shown in Figure 22 for the three

training methods. For the backpropagation and momentum techniques, a set of 100 runs

were averaged. The figure shows the 95 percent confidence interval using the Monte
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Comparison of Learning Rules on Mesh Data
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Figure 18. Mesh Training Accuracy versus Iterations. A 2-10-10-4 network was
trained with the following parameters: Kalman (e = 1.0, q = 0.05),
Backpropagation (q~ = 0. 1), Momentum (77 = 0. 1, a~ = 0.6). The 95 perceiit
Monte Carlo confidence interval on the average training accuracy is shown
for backpropagation and momentum. A single Kalman run is plotted.
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Comparison of Learning Rules on Mesh Data
1-

Kalman
Back Propagation .

0.9 ~Momentum ,4*0

0.8

0.7

0.6 -" p

0.4 - .

0.2
le-06 le-05 0.0001 0.001 0.01 0.1 1 10 100

GIGAFLOPS

Figure 19. Mesh Training Accuracy versus FLOPS. A 2-10-10-4 network was trained
with the following parameters: Kalman (c = 1.0, q = 0.05), Backpropagation
(q = 0.1), Momentum (ir = 0.1, a = 0.6). The 95 percent Monte
Carlo confidence interval on the average training accuracy is shown for
backpropagation and momentum. A single Kalman run is plotted.
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Figure 20. Mesh Decision Regions formed by the multilayer perceptron (2-10-10-4)
trained with the extended Kalman filter algorithm (a) and backpropagation
(b) at 26,600 iterations. Kalman parameters: f = 1.0 and q = 0.05.
Backpropagation learning rate: q~ = 0. 1.
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Figure 21. Mesh Decision Regions formned by the multilayer perceptron (2-10-10-4)
trained with backpropagation at 140,000 iterations (a) and 2 million iterations
(b). Learning rate 77 = 0. 1.
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Carlo method for the average training accuracy. The Kalman technique was not averaged

for this problem due to the computational complexity; thus, the accuracy versus iterations

for a single training session is plotted. Again it is apparent that the Kalman method

achieves higher classification accuracy more quickly on the basis of iterations. The trained

networks were tested on a set of twenty-three features vectors independent of the training

database. The test results are shown in Figure 23. For the backpropagation and momentum

techniques, the test accuracy as a function of training iterations is shown using the 95

percent Monte Carlo confidence interval. For the single Kalman training session, only

the terminal test accuracy was measured at 1675 iterations. Thus, only one point for the

Kalman run is plotted. From the plot, it is apparent that the single Kalman run achieved a

higher test set accuracy (82%) than either backpropagation or momentum which achieved

average test set accuracies of 72-74% and 74-76%, respectively (95 percent Monte Carlo

confidence interval). When the network is trained using either backpropagation or the

momentum for 10,000 iterations, an average classification accuracy on the test data of

78-80% (95 percent Monte Carlo confidence interval) is achieved. Figure 24 compares

the learning rules on the basis of floating point operations for training accuracy. Again,

the Kalman algorithm requires three orders of magnitude more FLOPS to achieve the

same accuracy. The test accuracy as a function of FLOPS is shown in Figure 25. Lack of

computer resources prevented averaging multiple runs of the Kalman learning rule since

a single Kalman training session consumed over 100 billion floating point operations.

The final comparison of the learning rules used the Roggemann absolute range

imagery. The problem was to classify feature vectors extracted from absolute range data

as either target or non-target (target detection). A total of 276 non-targets and 124 targets

were used. The hold out technique for testing was used in this example. Two-thirds of

the vectors from each class were used for training and one-third were reserved for testing

the trained networks. Eight features from the range data were used. They are shown in

Table 6. The results of training a two-layer network with five hidden nodes are shown

in Figures 26 and 27. The 95 percent Monte Carlo confidence interval of the estimated
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Comparison of Learning Rules on Doppler Data
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Figure 22. Doppler Data Training Classification Accuracy vs Iterations. A multilayer
perceptron (22-10-6-4) was trained with the following parameters: Kalman
- E = 1.0 and q = 0.05; Backpropagation - ij = 0.3; Momentum - q = 0.3
and a = 0.8. The 95 percent confidence interval on the average accuracy is
shown for backpropagation and momentum. A single Kalman run is plotted.
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Comparison of Learning Rules on Doppler Data
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Figure 23. Doppler Data Testing Classificaion Accuracy vs Iterations. A multilayer
perceptron (22-10-6-4) was traineu with the following parameters: Kalman
- E = 1.0 and q = 0.05; Backpropagation - q = 0.3; Momentum - q = 0.3
and o = 0.8. The 95 percent confidence interval on the average accuracy is
shown for backpropagation and momentum. The terminal test accuracy for a
single Kalman run is plotted.
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Comparison of Leaming Rules on Doppler Data
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Figure 24. Learning Rule Comparisons on Doppler Data: Training Accuracy vs FLOPS.
A multilayer perceptron (22-10-6-4) was trained with the following pa-
rameters: Kalman - (7 = 1.0 and q = 0.05; Backpropagation - q = 0.3;
Momentum - 7) = 0.3 and a = 0.8. Kalman parameters are c = 1.0 and
q = 0.05. The 95 percent confidence interval on the average accuracy is
shown for backpropagation and momentum. A single Kalman run is plotted.
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Comparison of Learning Rules on Doppler Data
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Figure 25. Learning Rule Comparisons on Doppler Data: Testing Accuracy vs FLOPS. A
multilayer perceptron (22-10-6-4) was trained with the following parameters:
Kalman - E = 1.0 and q = 0.05; Backpropagation - 71 = 0.3; Momentum
- 77 = 0.3 and a = 0.8. Kalman parameters are E = 1.0 and q = 0.05.
The 95 percent confidence interval on the average accuracy is shown for
backpropagation and momentum. The terminal test accuracy for a single
Kalman run is plotted.
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Table 6. Absolute Range Features Used for Target Detection Problem

Feature Description

Length/Width Ratio of object length to width

Absolute Value of Difference of Standard Absolute value of the difference between
Deviations the standard deviation of the object pixel

values and the standard deviation of the
local background pixels

Complexity Ratio of border pixels to total object pixels

Blob Standard Deviation Standard deviation of the object pixel val-
ues

Absolute Difference of Means Absolute value of the difference between
the mean of the object pixel values and the
mean of the local background pixels

Blob Length Self-explanatory

Blob Height Self-explanatory

Compactness Ratio of number of pixels on object to num-
ber of pixels in rectangle which bounds
object

average accuracy is plotted for the both the training and test data as training progresses.

The full database of 400 feature vectors was randomly partitioned between training and

test sets insuring proportionate representation in both sets for each of the 100 runs. In

this case, the Kalman algorithm shows no benefit over the momentum technique on the

test data. The situation is even worse for the Kalman algorithm when computational

complexity is included as shown in Figures 28 and 29. Again, the Kalman algorithm uses

three orders of magnitude more FLOPS to achieve somewhat poorer performance than

either backpropagation or momentum.
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Comparison of Learning Rules on Absolute Range Data
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Figure 26. Target Detection Training Accuracy in Absolute Range Imagery versus
Iterations. A multilayer perceptron (8-5-2) was trained with the following
parameters: Kalman - E = 1.0 and q = 0.05; Backpropagation - q = 0.3;
Momentum - q = 0.3 and a = 0.8. The 95 percent Monte Carlo confidence
interval is plotted for the average training accuracy.

71



Comparison of Learning Rules on Absolute Range Data0.9 ..

0.85

0.8

0.75

0.7

0.65 Kalman
Back Propagation ....

0.6 Momentum --

0.55 1

0 1 2 3 4 5
Iterations (1000x)

Figure 27. Target Detection Testing Accuracy in Absolute Range Imagery versus It-
erations. A multilayer perceptron (8-5-2) was trained with the following
parameters: Kalman - c = 1.0 and q = 0.05; Backpropagation - 71 = 0.3;
Momentum - q = 0.3 and a = 0.8. The 95 percent Monte Carlo confidence
interval is plotted for the average test accuracy.
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Comparison of Learning Rules on Absolute Range Data
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Figure 28. Target Detection Training Accuracy in Absolute Range Imagery versus
FLOPS. A multilayer perceptron (8-5-2) was trained with the following
parameters: Kalman - E = 1.0 and q = 0.05; Backpropagation - q = 0.3;
Momentum - q-= 0.3 and a. = 0.8. The 95 percent Monte Carlo confidence
interval is plotted for the estimated average training accuracy.

73



Comparison of Learning Rules on Absolute Range Data
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Figure 29. Target Detection Testing Accuracy in Range Imagery versus FLOPS. A
multilayer perceptron (8-5-2) was trained with the following parameters:
Kalman - E = 1.0 and q = 0.05; Backpropagation - r7= 0.3; Momentum -
r/ = 0.3 and a = 0.8. The 95 percent Monte Carlo confidence interval is
plotted for the average test accuracy.
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In this section, four different classification problems were solved using the extended

Kalman filtering approach to training a multilayer perceptron as well as using backprop-

agation and its cousin, the momentum method. On the toy problems using the XOR and

mesh data as well as the doppler imagery, the extended Kalman filtering approach achieved

higher classification accuracies more quickly than either backpropagation or momentum

in terms of training iterations. However, on the absolute range imagery, there was no

statistical advantage to the extended Kalman filtering technique over backpropagation or

momentum in terms of average test accuracy versus iterations. In all cases, when the

computational complexity was accounted for, the extended Kalman filtering method for

training the weights required about three orders of magnitude more computations than

either backpropagation or momentum to achieve the same classification accuracy.

4.5 Conclusion

It was previously shown by Singhal and Wu that a multilayer perceptron can be

trained using an extended Kalman filter. This chapter has demonstrated a previously

unknown result; namely, that backpropagation is a degenerate form of extended Kalman

filtering. That is, the backpropagation algorithm results from making certain simplifying

assumptions in the extended Kalman filtering approach. It was found that backpropagation

sacrifices a great deal of information about the weights that the Kalman filter uses. The

examples in Section 4.4 have shown the Kalman filter can achieve higher accuracy, in many

cases, after a fixed number of training cycles than backpropagation by using the information

which backpropagation discards; however, this is not always the case as demonstrated

on the final example with the absolute range data. Although backpropagation discards

much information, the result is a learning algorithm which is much more computationally

efficient and achieves comparable classification performance.
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V. The Multilayer Perceptron:

A Bayes Optimal Discriminant

Function Approximator

5.1 Introduction

In chapter III, it was shown how to determine which features to use in a multilayer

perceptron classifier. The previous chapter has demonstrated that there is a concrete link

between the backpropagation learning rule and the extended Kalman filter algorithm. The

question now is "Does a multilayer perceptron classifier have any relationship to other

well-known classifiers?" This chapter will demonstrate that the multilayer perceptron

when trained for classification using backpropagation is a minimum mean squared-error

approximation to the Bayes optimal discriminant functions. This result shows conclusively

that the multilayer perceptron is performing classification using the same rules as most

traditional classifiers (29). The proof shown here was inspired by the work of Duda and

Hart in their book, Pattern Classification and Scene Analysis (7).

Previous research in the area of pattern recognition has shown that multilayer

perceptron, k-nearest neighbor and conventional non-parametric Bayesian classifiers yield

the same classification accuracy, statistically speaking (18, 25, 26). This fact is also

demonstrated by the performance levels shown in Table 4 on the FLR imagery. These

results have been empirical and, hence, are dependent on the data sets used. However,

the consistently similar performance has led this author to investigate the theoretical

connections. This chapter will show how a multilayer perceptron approximates the Bayes

optimal discriminant function when used for classification.

The next section will show how a single output multilayer perccptron can be trained

to approximate the Bayes optimal discriminant function. In section 5.3, this result will be

extended to multiple classes. The following section will discuss some of the implications

of these results for neural network architecture and training criteria.
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5.2 Two Class Problem

In this section, the two class discrimination problem will be considered and it will be

shown that a multilayer perceptron can be trained to approximate, in a mean squared-error

sense, the Bayes optimal discriminant function.

Let x represent the feature vector which is to be classified. Define F(x, w) to be

the output of the multilayer perceptron where w is the weight vector. Let the two classes

be denoted w, and w2. Let Xi be the set of all possible feature vectors for class u., and

XA' U X 2 = X. The set X represents the ensemble of all possible feature vectors that can be

generated. Also, suppose for the two class problem the network is trained to produce +1

when the feature vector is from class ,), and - I when the vector is from class -)2. These

outputs are commonly achieved using the tanh-1(.) function as the output nonlinearity for

the network nodes. The Bayes optimal discriminant function which minimizes probability

of error can be written in many forms. Let g0(x) be the Bayes optimal discriminant

function given by

90(x) = P(w x) - P(' 2 x) (20)

where P(. jx) is the probability that x belongs to class .,,. Hence, 90(x) is positive when

x is most likely from class ,, and negative when x is most likely from class "'2. The

distribution of feature vectors is governed by

p(x) = P(Xjw)P(wi) + p(xl; 2 )P(Y2 )

where P(w,) is the a priori probability of class w, and p(xjw1,) is the conditional probability

density function of x given that x is from class w,, so that p(x) is the probability density

function governing x. In the following, a lower case p(.) always indicates a probability

density function and an upper case P(.) represents a probability function.
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It shall be shown that the following error criterion is minimized by backpropagation

in the limit as the number of training vectors, P, becomes infinite.

e2(w) = J[F(x, w) - g0(x)] 2p(x)dx

In other words, backpropagation finds a minimum mean squared-error approximation to

the Bayes optimal discriminant function.

Suppose samples are generated by p(x) such that X, = {x, X2, ... xp, } C A'1 and

X2 = {Xp,+i,x2 ..... Xp,+p 2 } C X 2 where Pi is the number of training vectors in class ,.

Define the sample data error function, E,(w), as shown below:

E,(w) = E (F(x,w) - 1)2+ E (F(x,w) + 1)2
xEX1  xEX 2

where X, is the set of training vectors from class -,,. It is well known that backpropagation

approximately minimizes E, with respect to w (14) (31:318-328) (35). The sample

data error function, E,(w), describes a hyper-dimensional surface which backpropagation

traverses seeking a minimum; hence, E,(w) is called the sample data error surface. Now

let the average error, E0 (w) be defined as follows:

Ea(w) = lim r Ea(w)

where P is the total number of features vectors for both classes. The average error, E0 (w),

is the ensemble error surface for the pattern recognition problem since it represents the

error surface when all possible feature vectors are included in the computation. When

the minimum of the sample data error surface, E,(w), is sought, it is assumed that E,(w)

represents a reasoiiable approximation to the ensemble error surface, Ea(w). If, however,

the sample data does not accurately represent the underlying probability density functions,

then the minimum of E,(w) will not yield a classifier with comparable performance when

tested with feature vectors not used in designing the classifier.
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Now rewrite the expression for Ea using the number of vectors in each class.

P -Z - I (F(xw) - 1)2 + '2 1 (F(xw) )2

P-oc P PPXX ~xX

where P, is the number of feature vectors from class w,. As the total number of feature

vectors, P, increases without bound, the number of vectors in the individual classes, Pi,

becomes infinite for all classes with non-zero a priori probability. Thus, by the Strong

Law of Large Numbers (23:258-263),

E.(w) = P(,;)J (F(x, w) - 1)2p(xlw,)dx + P( ,2)J(F(x, w) + 1)2p(xJw 2 )dx

where p(xfwi) is the conditional probability density function of the input x given that it is

from class ;j. Combining the integrals and gathering terms yields

E,(w) f {[F2(x,w) + 1]. [p(xtl ")P(W'l) + p(xW 2)P( 2)] -

2F(x, w)[p(xjw1 )P(,,I) - p(xj- 2)P(w 2 )j}dx (21)

Using Bayes Formula, the above expression can be simplified and the optimal discriminant

function given by Equation 20 can be introduced. Note that

go(X)p(x) = p(xIljl)P(1wl) - p(xl-' 2)P(w'2 )

P(xIi )P(w) + P(xI' 2)P(-' 2 ) = p(x)

Thus Equation 21 becomes

Eo(w) = [F(xw)p(x) - 2F(x, w)go(x)p(x)]dx + 1

f jF(x, w) _ go(X)] 2p( x)dx + {I - f (x)p(x)dx}

f=(W + {I - fJg(x)(x)dx} (22)
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Now since backpropagation is minimizing E, with respect to w, it is also minimizing E,,

with respect to w. Since the term in braces in Equation 22 is independent of w, minimizing

E, with respect to w also minimizes e2. Hence, backpropagation yields a multilayer

perceptron which is a minimum mean squared-error approximation to the Bayes optimal

discriminant function.

The next section will extend this result to a multiclass discrimination problem

and show that the outputs of the multilayer perceptron also represent the Bayes optimal

discriminant functions and that the outputs can be interpreted as a posteriori probabilities.

5.3 Multiclass Problem

This section will show that the output functions of a multilayer perceptron approxi-

mate the Bayes optimal discriminant functions for a multiclass recognition problem.

Let Fi(x, w) be the ith output of a multilayer perceptron, i = 1,..., N (.X class

problem). Also, let the desired output be one when x E X, and zero otherwise. That is,

d,(x)
10 otherwise

The Bayes optimal discriminant functions are given by

g,(x) = P(w Ix) for all i = 1,2,.....

and the decision rule is: Decide x is from class w, if g,(x) > gj(x) for all j 0 i. The

Bayes optimal discriminant functions are optimal in the sense that probability of error is

minimized by their use.

Define the sample data error function similarly to that for the two class problem:

E8 (w) = ZEx, L F'(x,w) + (F,(xw) - )2] + +
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rE X ,2 (, w)+ (Fxv(x, w) - 1 )2]

The average error becomes

E,,(w) = lirn -E, (w)

Applying the Strong Law of Large Numbers and sirnpiifying yield,, the following

E,,(w) =P(wj) [(F1 (XW) _ 1)2p(XIwI,)dx+J F?(x. w)p(xI,.L)dx±.+

+fJ F ,.(x, w)p(xjw'1 )dx]+ +P.)[j

N (Fj(jx. w) - I )'p(xI. j)P(i, )dx + Z J2](x. w)p(xjc- )P(.,j) dx]

-F ZX {JF(W) [P(xK--)P(. )] dx-

f[2Fi(x, w) - lIp(xkwi)P(,,;)dx} (23)

By Bayes Law the following identities hold

N

j=1

p(xl"i&P(,) = ( pX, )

=P(l-1ilx)]p(X)

Y' g(x)I(x)
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Thus, Equation 23 becomes
N

E,,(w) = j[JF2(x~w)p(x) - [2Fi(x,w) - llgt(x)p(x)} dx]

Note that the term in braces is independent of w; hence, backpropagation minimizes the

following error criterion
N

2(w) = J[Fi(x,w) - ,(x)] 2p(x)dx
z=l

Thus, the output functions of a multilayer perceptron approximate the Bayes optimal

discriminant functions in the minimum mean squared-error sense. The next section will

discuss the implications of this result.

5.4 Discussion

It has been shown that backpropagation provides a minimum mean squared-'rror

approximation to the Bayes optimal discriminant functions for both the two class problem

and the multiclass problem. There are several implications of this result which will now

be discussed.

An important conclusion is that the outputs of the multilayer perceptron when

trained as previously described represent a posteriori probabilities. That is,

F(x, w) _ P(wIx)

This fact makes it possible to set sensible decision thresholds for the outputs of a

multilayer perceptron. For example, a rejection criterion could be set that specifies the

input be rejected if the a posteriori probability of the indicated class is below 95 percent.

Such criteria can be set not knowing what the outputs represent, but without a proper
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interpretation of the outputs the criteria are at best ad hoc. Note, however, that how

closely the multilayer perceptron approximates the a posteriori probabilities depends on

the architecture of the network and the functional form of the underlying probability

density functions. If there are insufficient units in the hidden layer(s) of the multilayer

perceptron to accurately model the a posteriori probability functions, then the network's

outputs will be poor approximations to the actual probability functions.

The second result of the foregoing is that this proof is not restricted to the multilayer

perceptron. The specific architecture of the network was never used in the derivation.

Hence, the result applies to any technique which attempts to minimize the mean squared-

error and the desired outputs are 0 and 1 (for the multiclass problem).

Finally, recall Equaticns 22 and 24 for the two class and multiclass problems

respectively. In both equations, the error between the Bayes optimal discriminant function

and the multilayer perceptron's approximation is weighted by the probability density of

the feature vectors, p(x). Hence, the multilayer perceptron's output will more closely

approximate the Bayes optimal discriminant function where p(x) is large. If the goal is

to minimize the probability of error, the fit between the multilayer perceptron and the

Bayes optimal discriminant function should be better where go(x) = 0 , in the two class

problem, and where g,(x) = gj(x) in the multiclass case since these conditions determine

the decision boundaries of the classifier. In general, these conditions do not occur where

p(x) is large (see Figure 30 for an example).

5.5 Conclusion

This chapter has shown that the multilayer perceptron trained using backpropagation

approximates the Bayes optimal discriminant functions for both two class and multiclass

recognition problems. Most importantly, it has been shown that the outputs of the

multilayer perceptron approximate the a posteriori probability functions when trained

using backpropagation for the multiclass problem. In fact, the proof does not depend on

the architecture of the network and is, hence, applicable to any network that minimizes

83



p(X Lw)P(wi)

.16 

/

.14

.12

0.08

0.06 "P( X 2 )P(W2 )

0.04

0.02

0
0 2 4 6 8 10 12 14

x

Figure 30. Example showing that the decision boundaries do not necessarily occur
where the density function is large. The decision boundary occurs where
the weighted density functions crossover; yet the overall density function,
p(x) = p(x11) )P(wi )+P(XIW2)P(1 2), is greatest at the peaks of the individual
density functions.
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the mean squared-error measure. The conclusion is that, contrary to popular opinion,

these neural networks are simply another method for cstimating the probability density

function of the input feature vectors. There is really nothing magical or mysterious about

these techniques. A multilayer perceptron simply provides a powerful architecture for

function approximation. Recently, the work of Cybenko has shown that a multilayer

perceptron with a single hidden layer can uniformly approximate any continuous function

with support in the unit hypercube when sigmoidal output functions are used in the hidden

layer (5). Hence, these networks are reasonable architectures with which to attempt

probability density function estimation.
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VI. Application to Multisensor Automatic Target Detection

6.1 Introduction

It has now been shown in many examples that the multilayer perceptron can

be used effectively as a classifier, that the training method is closely related to the

well-known extended Kalman filtering algorithm, and that the classifier approximates

the Bayes optimal discriminant functions. In this chapter, the multilayer perceptron

classifier will be applied to an Air Force problem, and its performance will be compared

to a conventional approach. Roggemann showed that multisensor fusion provides a

statistically significant increase in performance using conventional techniques (19). The

question is "Can a multilayer perceptron be used for this problem?" This chapter will

show that the multilayer per, eptron can be used effectively for multisensor fusion and that

its performance is statistically the same as Roggemann's conventional Bayesian approach.

This chapter will demonstrate the fusion of information from multiple sensors for

the discrimination of targets from non-targets. The need for multiple sensors has been

acknowledged as necessary for many military applications (2). Effective algorithms for

using the information from several sensors need to be developed.

The following section will provide background information on the problem to be

addressed. In Section 6.3, a simple technique for multisensor fusion will be described and

applied to real sensor data. It will be shown that statistically significant benefits can be

derived from the fusion process.

6.2 Problem Description

In this section, the problem of target recognition using multiple sensors and the

approach to its solution used here will be described. The problem of interest is to

discriminate targets from non-targets in absolute range and forward looking infrared

(FLIR) imagery. Targets consist of tanks, trucks, and armored personnel carriers (APCs).
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Figure 31. Typical Range Image and its Segmented Version

The absolute range imagery consists of 32 bits per pixel of range information with

an angular resolution of 0.05-0.20 milliradians depending on the sensor field-of-view

setting. The FLIR imagery has 8 bits per pixel with an angular resolution of 0.186-0.56

milliradians. Targets were viewed at distances from 860 meters to 1700 meters.

The goal is to find a classifier which can fuse the information from multiple sensors.

In this case, there are two streams of information, one from the range sensor and one from

the FLIR sensor.

The segmenter used for the absolute range imagery was developed by Roggemann

(19:42-68). This segmenter uses small scale planarity to separate suspected targets from

the background. A typical range image and its segmented version are shown in Figure 31.

A histogram-based algorithm provided the FLIR imagery segmentation. This algorithm

was also developed by Roggemann (19). Figure 32 shows a typical FLIR image and the

output of the segmenter.

A variety of features were initially computed by the feature extractor for each

sensor. The features chosen have been shown to be useful in image recognition. The
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Figure 32. Typical FLIR Image and its Segmented Version

features computed from each sensor are listed in Table 7. These are the features used

by Roggemann (19:71-76,101). The correspondence feature listed last in the table was

developed by Roggemann (19:77-82). The correspondence feature is discrete valued

and is dependent on the spatial correspondence of blobs segmented in the dominant and

non-dominant sensors. The dominant sensor provides the initial blobs which are classified

as either target or non-target. The non-dominant sensor segmented image is searched in

the spatial locations corresponding to segmented blobs in the dominant sensor. If there is

a segmented blob in the same spatial location in the non-dominant sensor as the dominant

sensor, then features are extracted from the non-dominant sensor blob for use in classifying

the dominant sensor blob.

Three different classifiers were evaluated for fusing the information from the

sensors. A multilayer perceptron, the k-nearest neighbor algorithm and a non-parametric

Bayesian classifier using Parzen windows were applied to the classification problem. The

k-nearest neighbor algorithm and non-parametric Bayesian classifier are well understood
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Table 7. Features Used for Multisensor Target Detection

FLIR Features
Feature Description

Complexity Ratio of border pixels to total object pixels

Length-to-Width Ratio Ratio of object length to width

Contrast of Means Contrast ratio of object mean to local back-
ground mean

Absolute Range Features
Feature Description

Length-to-Width Ratio Same as above

Absolute Difference of the Standard Devi- Absolute difference between standard de-
ations viation of object pixels to local background

pixels

Complexity Same as above

Multiple Sensor Feature
Feature Description

Correspondence A multiple sensor feature developed by
Roggemann (19:77-82) (see text, p. 88)
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statistical classifiers. They were used to provide a baseline comparison with the neural

network. The performance of the multilayer perceptron is also compared with the results

of Roggemann's conventional non-parametric Bayesian approach using histograms to

estimate the density functions (19).

6.3 The Multisensor Fusion Approach

In the previous section, the problem at hand was described. In this section, a simple

method for feature level fusion will be proposed and tested on a set of range and FLIR

imagery.

To perform the fusion, one of the sensors is assumed to be dominant. The dominant

sensor provides the initial blobs. The non-dominant sensor is then checked to see if there

are any blobs which correspond to the one under consideration in the dominant sensor.

For the database used, only the range sensor was use d as the dominant sensor because in

the FLIR database out of 550 blobs only 176 were located such that the range sensor had

a view of that region in space. Of these 176 FUR blobs, only one was misclassified using

the FLR features alone; hence, there was negligible opportunity for the range sensor to aid

the FLIR sensor. On the other hand, all 400 blobs in the range database were positioned

so that there was a corresponding view in the FLIR. The range sensor alone was able to

classify correctly 85 percent of the blobs. Hence, there was room for improvement with

the addition of the FLIR sensor. The need for a dominant sensor is not a severe limitation.

It simply means that each sensor will have its own neural network to classify detections

found in the sensor with the aid of any non-dominant sensors.

The input to the network is the range and FLR feature vectors concatenated with

the correspondence feature. When no blob is available in the FLIR for a given range blob,

the FUR vector is set to zero. These vectors are then normalized using the Gaussian

technique described in Chapter II (p. 16). Note that in the case when a corresponding

blob in the FLIR is not found and zeros are substituted, the actual input to the network

is non-zero due to the normalization technique applied. However, the correspondence
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Table 8. Correspondence Feature Normalization

Value Network Input
No Correspondence 1/4
Weak-Weak Correspondence 1/2
Weak Correspondence 3/4
Strong Correspondence 1

feature was not normalized using the Gaussian procedure. Instead, the correspondence

feature was normalized as shown in Table 8.

For the following results, the hold one out method (6:356-357) was applied to

the database which consisted of 400 concatenated feature vectors. Table 9 gives the

results of applying the hold one out method to the range dominant database using the

multilayer perceptron and Roggemann's approach. The performance with and without

the Roggcmann correspondence feature is shown for the multilayer perceptron. The

multilayer perceptron was trained with a learning rate of q = 0.3 and a momentum factor

of a = 0.8. Note that Roggemann used the same database of images and features and also

the same test methodology, namely, hold one out. The addition of the FLIR information

provides a substantial improvement in classifier performance. The table shows the 95

percent classifier confidence interval estimate of the true accuracy rate. Since for each

classifier the confidence interval for the multisensor fusion accuracy is higher than and

non-overlapping with the range only accuracy, then the addition of the FLIR sensor

provides a statistically significant improvement in performance. Note that the addition

of the correspondence feature is only of marginal utility for the multilayer perceptron

classifier. More importantly, there is no statistical difference between the multilayer

perceptron approach and Roggemann's conventional approach.

The technique applied for fusion of information in a multilayer perceptron is not

restricted to that architecture. In fact, the fusion can also be performed using a k-

nearest neighbor approach or a non-parametric Bayesian classifier using Parzen windows.
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Table 9. Multisensor Target Detection Accuracy Results Compared With Roggemann

Range Only Accuracy Range+FLIR Accuracy
Classifier (95% Confidence Intervals)Multilayer Perceptron(6-5-2)

without correspondence feature 82.0-89.0% 90.2-95.3%
Multilayer Perceptron(7-5-2)
with correspondence feature 82.0-89.0% 92.6-96.9%
Roggemann's Conventional
Bayesian Approach (19:102) 83.0-89.8% 91.7-96.3%

Table 10. Multisensor Target Detection Accuracy Results Compared With Statistical
Classifiers

Range Only Accuracy Range+FLIR Accuracy

Classifier (95% Confidence Intervals)
Multilayer Perceptron(6-5-2)
(i = 0.3, a = 0.8) 82.0-89.0% 90.2-95.3%
k-nearest neighbor (k = 3) 81.8-88.7% 91.1-95.9%
Non-parametric Bayesian
with Parzen Windows (aT = 0.5) 83.7-90.3% 91.7-96.3%

Table 10 shows the estimated true accuracy rate of the three classifiers on the Roggemann

target/non-target database but not using the correspondence feature. As in the previous

table, the hold one out method was used and the 95 percent confidence interval is shown.

For the k-nearest neighbor algorithm, the best performance on the multiple sensor case

was achieved using k = 3 out of the tested values of {1,3,5,7,9}. The width of the

Gaussian Parzen window was also varied from 0.1 to 1.5 by increments of 0.2. The best

multiple sensor performance was achieved using a width of or = 0.5. The table clearly

shows that there is no statistically significant difference between the three classifiers

which is not surprising since as shown in Chapter V the multilayer perceptron classifier is

approximating the Bayes optimal discriminant functions.
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6.4 Conclusion

In this chapter, the problem of fusing information from multiple sensors for pattern

recognition has been addressed. The discrimination between targets and non-targets

in absolute range and forward looking infrared (FLIR) imagery was examined. A

novel approach to sensor fusion was developed and was shown to provide a significant

improvement in target detection over the single sensor approach. Although the example

shown fuses information from only two sensors, the technique is easily extended to any

number of additional non-dominant sensors. Also, the performance of the multilayer

perceptron is statistically the same as the conventional approach used by Roggemann and

other statistical classifiers which further supports the results of Chapter V which showed

the equivalence between the multilayer perceptron classifier and the Bayes optimal

discriminant functions. Roggemann's correspondence feature was found to be of little use

for the multilayer perceptron given that its performance was not significantly degraded

without the feature using the confidence intervals technique to define significant.
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VII. Recommendations and Conclusions

7.1 Recommendations

There are, of course, several avenues of research remaining which could be followed

in the future with worthwhile benefits. First, the feature selection technique developed

in Chapter III can be naturally extended to pruning not only the inputs to a multilayer

perceptron but also the internal nodes and weights. The problem of selecting the

architecture of a network for a given situation continues to elude researchers. To date, no

theoretical work has been able to specify how many nodes are needed or when multiple

hidden layers would be beneficial. Neither have automated experimental techniques been

generally accepted for the determination of network architecture. This area is ripe for

further research.

An exhaustive comparative study of the relative merits of statistical and multilayer

perceptron classifiers needs to be undertaken. In this dis, -rtation, it has been shown

that no significant difference in classification performance can be expected between the

statistical classifiers and the multilayer perceptron. However, many questions remain

unanswered. These competing designs should be compared based on the number of free

parameters, ease of implementation, cost, computational complexity, and generalization

as a function of training set size. Only after a study such as this will it be possible to say

when a given type classifier should be chosen over another in a real world situation.

The neural network architecture studied here is basically static. The network is

trained on an unchanging database and then the weights are fixed. If something occurs

after training which changes the distribution of the data, the network will not be able

to compensate for the change. Dynamical systems need to be undertaken now that will

be continuously learning from the environment and are thus able to follow changes in

the input distributions. For example, this capability would allow target rLcognizers to

function effectively even under changing weather conditions.
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7.2 Conclusions

A new technique for ranking the importance of features for a multilayer perceptron

has been developed. The saliency measure has been shown empirically to be both

consistent and useful. When compared with the traditional method of ranking input

features by the probability of error criterion, it performed as well and resulted in a similar

ranking for the input features. Also, backpropagation was compared to extended Kalman

filtering using the saliency measure. It was found that both methods for setting the weights

in a multilayer perceptron place equal relative emphases on the features. The saliency

measure gives a clear indication that multilayer perceptrons are able to effectively ignore

useless inputs as indicated by the test results. This fact gives insight into the behavior of

multilayer perceptrons with respect to sensitivity to input features.

For the first time it has been demonstrated that backprupagation is closely related to

the well known method of extended Kalman filtering for training the weights in a multilayer

perceptron. That is, the backpropagation algorithm results from making certain simplifying

assumptions in the extended Kalman filtering approach. It was found that backpropagation

sacrifices a great deal of information about the weights that the Kalman filter uses. The

examples have shown the Kalman filter can achieve higher accuracy, in many cases, after

a fixed number of training cycles than backpropagation by using the information which

backpropagation discards; however, this is not always the case as demonstrated on the final

example with the absolute range data. Although backpropagation has poorer performance

in terms of classification accuracy versus number of training iterations, when compared

on the basis of numerical complexity, backpropagation is clearly superior to the extended

Kalman filtering approach. Thus, the assumptions made by backpropagation are clearly

beneficial.

Perhaps, the single most important result of this research is the proof that the

multilayer perceptron trained using backpropagation for classification approximates the

Bayes optimal discriminant functions. For the first time, it has been shown that this neural

network is not doing anything unusual. It is simply another method for approximating

95



the underlying distribution of the data which is the goal of all classifiers. The result

is a complete demystification of the multilayer perceptron classifier. Importantly, it has

been shown that the outputs of the multilayer perceptron approximate the a posteriori

conditional probability distribution functions when trained using backpropagation for the

multiclass problem. In fact, the proof does not depend on the architecture of the network

and is, hence, applicable to any network that minimizes the mean squared-error measure.

Finally, a novel approach to sensor fusion vas developed and was shown to provide

a significant improvement in target detection over the single sensor approach. The

approach is simple and can be easily extended to more than two sensors. A statistically

significant improvement in target detection was demonstrated on the absolute range and

FLIR imagery multiple sensor database. The sensor fusion technique can also be applied

using other statistical classifiers. It was shown that the classification accuracy differences

between the multilayer perceptron classifier and the statistical classifiers is not significant

in practice which further bolsters the proof that the multilayer perceptron classifier is

merely a minimum mean squared-error approximation to the Bayes optimal discriminant

functions.
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Appendix A. Network Sizing Techniques

This appendix will provide heuristic guidelines for determining the architecture of

multilayer perceptron for a specific application. Rigorous mathematical techniques have

not been developed to determine the appropriate number of hidden layers or the number

of nodes in those layers for a given problem. The result is that the architecture must be

selected in some ad hoc fashion. This appendix will attempt to describe the techniques

used in this research to determine the appropriate architectures for the classification

problems dealt with.

Initially, a baseline performance level should be established for the network to

achieve. There are two cases to consider. If the data being used is synthetically generated,

then the ideal solution to the problem is known. For example, in either the Exclusive-OR

or Mesh problems the solution is known, and the optimal performance is known to be 100

percent accuracy. When sensor data is used, the optimal solution is generally not known.

In these cases, the baseline performance must be specified using other criteria. Given

that the multilayer perceptron classifier approximates the Bayes optimal discriminant

functions, it is appropriate to use the performance of a non-parametric Bayesian classifier

as the baseline. Optionally, the performance of the k-nearest neighbor classifier could be

used as a baseline. If the application problem is not a classification one, then the baseline

performance on real world data must be established using other methods.

After establishing a baseline performance level, the networks can be trained using

the following approach:

* Start with a single layer network, that is, no hidden layers. In this case there are no

parameters which can be varied other than the learning rate, 17, and the momentum

factor, a. If the problem is linearly separable, or almost so, this network will

perform well.
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* Train the network using a variety of training rates and momentum factors. Observe

training out to approximately 10,000 iterations. If the performance index (accuracy

rate or average total euclidean error) is highly erratic, the learning rate and

momentum factor should be reduced. If learning is very slow, the learning rate may

be increased.

* Evaluate the network. Does the performance level approach the baseline? If the

performance level of the network is much below the baseline, increase the size of

the network.

* Add a single hidden layer to the network. Start with a small number of nodes on the

order of five.

* Train the network as before. Has the performance level been increased over that of

the previous network? Does the performance level approach that of the baseline?

If performance is still below that of the baseline, increase the number of nodes in

the hidden layer. Performance should be monitored on both the training set and an

independent test set. If the performance level of the training set is much better than

the test set (memorization), then the network should be reduced in size. As the size

of the network increases, expect the training to take longer.

* Evaluate the network. If the performance is not approaching that of the baseline

with increases in the number of single hidden layer nodes, increase the number of

hidden layers to two. Start with approximately five to ten nodes in each hidden

layer.

* Train the network as before except training will now take longer. Train networks to

at least 20,000 iterations before changing the architecture. Increase the number of

nodes in each hidden layer maintaining a fixed number in one layer while increasing

the other. Start by increasing the number of nodes in the first hidden layer and

slowly increase the number in the second hidden layer.
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* Select a few of the most promising architectures and train until performance

stabilizes for each. Up to 500,000 iterations may be required to obtain peak

performance from a given network.

After a network architecture has been found which provides near to baseline

performance, the following criteria should be considered. First, does the number of

free parameters in the network exceed the minimum requirements given by Cover? The

number of free parameters should not exceed one-half the total number of training vectors

(3). Second, does the network conform with the bounds given by Baum and Haussler?

According to Baum and Haussler, the number of free parameters should be less than

the product of the total number of training vectors and the desired error rate (1). The

Baum bound should be considered desirable but not required since his results are based

on networks with hard limiters.
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